io_copy_compute.cc 7.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void CopyFromHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::HtoD);
}

void CopyToHostSync(void* target, const void* source, size_t size) {
  TargetWrapper<TARGET(kFPGA)>::MemcpySync(
      target, source, size, IoDirection::DtoH);
}

/*
 * This kernel copies a tensor from host to FPGA space.
 */
class IoCopyHostToFpgaCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
48 49
    // param.y->CopyDataFrom(*param.x);
    param.y->mutable_data<float16>();
C
chonwhite 已提交
50 51
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
52
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
53 54
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
55 56 57 58 59 60 61 62 63 64 65 66 67
      tempTensor.copyFrom(param.x->ZynqTensor());
      // tempTensor.saveToFile("tempTensor", true);
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      // tempTensor.saveToFile("unaligned", true);
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->invalidate();
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->target() == TARGET(kHost));

      auto out_place = type->place();
      out_place.target = TARGET(kFPGA);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Copy IO from HOST to FPGA"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class IoCopyFpgaToHostCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kAny)> {
 public:
  void Run() override {
100
    // std::cout << "IoCopyFpgaToHostCompute \n";
Y
Yan Chunwei 已提交
101 102 103
    auto& param = Param<operators::IoCopyParam>();
    CHECK(param.x->target() == TARGET(kHost) ||
          param.x->target() == TARGET(kFPGA));
104 105 106 107 108 109
    // std::cout << "before CopyDataFrom \n";

    param.y->mutable_data<float>();
    param.y->ZynqTensor()->setDataType(zynqmp::FP32);
    param.x->ZynqTensor()->syncToDevice();

C
chonwhite 已提交
110 111
    if (param.x->ZynqTensor()->aligned() &&
        param.x->ZynqTensor()->shape().shouldAlign()) {
112
      zynqmp::Tensor tempTensor;
C
chonwhite 已提交
113 114
      tempTensor.mutableData<float16>(zynqmp::FP16,
                                      param.x->ZynqTensor()->shape());
115 116 117 118 119 120 121 122 123 124 125 126 127
      tempTensor.copyFrom(param.x->ZynqTensor());
      // tempTensor.saveToFile("tempTensor", true);
      tempTensor.setAligned(true);
      tempTensor.unalignImage();
      // tempTensor.saveToFile("unaligned", true);
      param.y->ZynqTensor()->copyFrom(&tempTensor);
    } else {
      param.y->ZynqTensor()->copyFrom(param.x->ZynqTensor());
    }
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());
    param.y->ZynqTensor()->flush();
    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  }

  std::string doc() const override { return "Copy IO from FPGA to HOST"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
146 147
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
148 149
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
150 151
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161
    .Finalize();

REGISTER_LITE_KERNEL(io_copy,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
162 163
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
164
    .BindOutput("Out",
165
                {LiteType::GetTensorTy(TARGET(kARM),
166
                                       PRECISION(kFloat),
167
                                       DATALAYOUT(kNHWC))})
Y
Yan Chunwei 已提交
168 169 170 171 172 173 174 175 176 177
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyHostToFpgaCompute,
                     host_to_device_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kHost),
178 179
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
180 181
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
182 183
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
184 185 186 187 188 189 190 191 192 193
    .Finalize();

REGISTER_LITE_KERNEL(io_copy_once,
                     kFPGA,
                     kAny,
                     kAny,
                     paddle::lite::kernels::fpga::IoCopyFpgaToHostCompute,
                     device_to_host_once)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
194 195
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
Y
Yan Chunwei 已提交
196 197 198 199 200
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kHost),
                                       PRECISION(kAny),
                                       DATALAYOUT(kAny))})
    .Finalize();