optimizer.h 8.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <vector>
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
21
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"
#ifdef LITE_WITH_NPU
#include "lite/core/mir/subgraph/generate_npu_program_pass.h"
#endif

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
class Optimizer {
 public:
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
    CHECK(!graph_) << "duplicate optimize found";
    graph_.reset(new mir::SSAGraph);
    graph_->Build(program, valid_places);
    graph_->SetValidPlaces(valid_places);

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();

    if (passes.empty()) {
      RunPasses(std::vector<std::string>{
58 59 60 61
          {"lite_quant_dequant_fuse_pass",     //
           "lite_conv_elementwise_fuse_pass",  // conv-elemwise-bn
           "lite_conv_bn_fuse_pass",           //
           "lite_conv_elementwise_fuse_pass",  // conv-bn-elemwise
Y
Yan Chunwei 已提交
62 63 64 65 66
           // This pass is disabled to force some opencl kernels selected for
           // final running, otherwise, they will be fused to ARM fusion
           // kernels, and the OpenCL devices will be discarded.
           // TODO(Superjomn) Refine the fusion related design to select fusion
           // kernels for devices automatically.
67 68 69 70
           "lite_conv_activation_fuse_pass",              //
           "lite_fc_fuse_pass",                           //
           "lite_shuffle_channel_fuse_pass",              //
           "lite_transpose_softmax_transpose_fuse_pass",  //
Z
zhupengyang 已提交
71
           "lite_interpolate_fuse_pass",                  //
72
           "identity_scale_eliminate_pass",               //
Y
Yan Chunwei 已提交
73 74 75
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
           "lite_elementwise_add_activation_fuse_pass",  //
#endif
76 77 78 79 80 81 82
           "static_kernel_pick_pass",        // pick original kernel from graph
           "variable_place_inference_pass",  // inference arg/var's
           // info(target/precision/layout/device)
           // using kernel info
           "argument_type_display_pass",  // debug pass: show arg-type-node's
                                          // info
                                          // (target/precision/layout/device)
Y
Yan Chunwei 已提交
83

84 85 86
           "type_target_cast_pass",  // add io_copy/io_copy_once if meet
                                     // different targets when last and next
                                     // node
Y
Yan Chunwei 已提交
87 88 89
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

90 91 92
           "io_copy_kernel_pick_pass",    //
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
93 94 95 96 97 98 99
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_precision_cast_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

100 101 102 103
           "type_layout_cast_pass",  // add layout/layout_once op if meet
                                     // different layout when last and next node
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
104 105 106 107
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "runtime_context_assign_pass",
108 109 110 111 112 113
           "argument_type_display_pass",  //
#ifndef LITE_WITH_OPENCL
           // TODO(ysh329): cause CL_INVALID_MEM_OBJECT when setArg in kernel
           "memory_optimize_pass",
#endif
           "argument_type_display_pass"}});
Y
Yan Chunwei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

  void KernelPickPreferPlace(const Place& place) {
    auto* pass = mir::PassManager::Global().LookUp<mir::StaticKernelPickPass>(
        "static_kernel_pick_pass");
    CHECK(pass);
    pass->SetPreferPlace(place);
  }

  const lite::Scope* exec_scope() const { return exec_scope_; }

  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
131 132 133 134 135 136 137 138 139
#ifdef LITE_WITH_NPU
    if (std::find(valid_places_.begin(),
                  valid_places_.end(),
                  Place{TARGET(kNPU), PRECISION(kFloat)}) !=
        valid_places_.end()) {
      CheckInputDimsNotEmpty(exec_scope_);
      auto pass = mir::PassManager::Global()
                      .LookUp<mir::subgraph::GenerateNPUProgramPass>(
                          "generate_npu_program_pass");
140 141 142
      try {
        pass->Apply(graph_);
        auto program = pass->GenProgram();
143 144 145
        CHECK(exec_scope_);
        program->set_exec_scope(exec_scope_);
        return program;
146 147
      } catch (...) {
        LOG(WARNING) << "Build NPU graph failed";
148 149 150
      }
    }
#endif
Y
Yan Chunwei 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
    pass->Apply(graph_);
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  // check the input dims in the scope, must not be empty
  void CheckInputDimsNotEmpty(const lite::Scope* scope) {
    CHECK(scope);
    auto* feed_var = scope->FindVar("feed");
    CHECK(feed_var) << "no feed variable in exec_scope: " << scope;
    auto* feed_tensor_list = feed_var->GetMutable<std::vector<lite::Tensor>>();
    CHECK_GE(feed_tensor_list->size(), 1);
    for (size_t i = 0; i < feed_tensor_list->size(); ++i) {
      CHECK(!feed_tensor_list->at(i).dims().empty())
          << "Input " << i << " dims can not be empty.";
    }
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

  const mir::SSAGraph& ssa_graph() const {
    CHECK(graph_);
    return *graph_;
  }

  mir::SSAGraph* mutable_ssa_graph() {
    CHECK(graph_);
    return graph_.get();
  }

  lite::Scope* exec_scope() { return exec_scope_; }

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
    for (auto& x : passes) {
203 204
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
Y
Yan Chunwei 已提交
205
      CHECK(pass) << "Can not find pass: " << x;
206
      bool matched = false;
207
      for (const auto& place : valid_places_) {
208 209
        if (PassMatchesTarget(*pass, place.target)) {
          matched = true;
210 211
        }
      }
212
      matched = matched && PassMatchesKernels(*pass);
213
      if (!matched) {
214
        LOG(INFO) << "   - Skip " << x << " because the target does not match.";
215 216 217 218
      } else {
        pass->Apply(graph_);
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226 227 228 229 230
    }
  }

 private:
  std::unique_ptr<mir::SSAGraph> graph_;
  std::vector<Place> valid_places_;
  lite::Scope* exec_scope_{};
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle