optimizer.h 7.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <vector>
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
21
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"
#ifdef LITE_WITH_NPU
#include "lite/core/mir/subgraph/generate_npu_program_pass.h"
#endif

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
class Optimizer {
 public:
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
    CHECK(!graph_) << "duplicate optimize found";
    graph_.reset(new mir::SSAGraph);
    graph_->Build(program, valid_places);
    graph_->SetValidPlaces(valid_places);

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();

    if (passes.empty()) {
      RunPasses(std::vector<std::string>{
58 59 60 61
          {"lite_quant_dequant_fuse_pass",     //
           "lite_conv_elementwise_fuse_pass",  // conv-elemwise-bn
           "lite_conv_bn_fuse_pass",           //
           "lite_conv_elementwise_fuse_pass",  // conv-bn-elemwise
Y
Yan Chunwei 已提交
62 63 64 65 66
           // This pass is disabled to force some opencl kernels selected for
           // final running, otherwise, they will be fused to ARM fusion
           // kernels, and the OpenCL devices will be discarded.
           // TODO(Superjomn) Refine the fusion related design to select fusion
           // kernels for devices automatically.
67 68 69 70
           "lite_conv_activation_fuse_pass",              //
           "lite_fc_fuse_pass",                           //
           "lite_shuffle_channel_fuse_pass",              //
           "lite_transpose_softmax_transpose_fuse_pass",  //
Z
zhupengyang 已提交
71
           "lite_interpolate_fuse_pass",                  //
72
           "identity_scale_eliminate_pass",               //
Y
Yan Chunwei 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
           "lite_elementwise_add_activation_fuse_pass",  //
#endif
           "static_kernel_pick_pass",        //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_target_cast_pass",          //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "io_copy_kernel_pick_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_precision_cast_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_layout_cast_pass",          //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "runtime_context_assign_pass",
97
           "memory_optimize_pass"}});
Y
Yan Chunwei 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

  void KernelPickPreferPlace(const Place& place) {
    auto* pass = mir::PassManager::Global().LookUp<mir::StaticKernelPickPass>(
        "static_kernel_pick_pass");
    CHECK(pass);
    pass->SetPreferPlace(place);
  }

  const lite::Scope* exec_scope() const { return exec_scope_; }

  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
115 116 117 118 119 120 121 122 123
#ifdef LITE_WITH_NPU
    if (std::find(valid_places_.begin(),
                  valid_places_.end(),
                  Place{TARGET(kNPU), PRECISION(kFloat)}) !=
        valid_places_.end()) {
      CheckInputDimsNotEmpty(exec_scope_);
      auto pass = mir::PassManager::Global()
                      .LookUp<mir::subgraph::GenerateNPUProgramPass>(
                          "generate_npu_program_pass");
124 125 126
      try {
        pass->Apply(graph_);
        auto program = pass->GenProgram();
127 128 129
        CHECK(exec_scope_);
        program->set_exec_scope(exec_scope_);
        return program;
130 131
      } catch (...) {
        LOG(WARNING) << "Build NPU graph failed";
132 133 134
      }
    }
#endif
Y
Yan Chunwei 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
    pass->Apply(graph_);
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  // check the input dims in the scope, must not be empty
  void CheckInputDimsNotEmpty(const lite::Scope* scope) {
    CHECK(scope);
    auto* feed_var = scope->FindVar("feed");
    CHECK(feed_var) << "no feed variable in exec_scope: " << scope;
    auto* feed_tensor_list = feed_var->GetMutable<std::vector<lite::Tensor>>();
    CHECK_GE(feed_tensor_list->size(), 1);
    for (size_t i = 0; i < feed_tensor_list->size(); ++i) {
      CHECK(!feed_tensor_list->at(i).dims().empty())
          << "Input " << i << " dims can not be empty.";
    }
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

  const mir::SSAGraph& ssa_graph() const {
    CHECK(graph_);
    return *graph_;
  }

  mir::SSAGraph* mutable_ssa_graph() {
    CHECK(graph_);
    return graph_.get();
  }

  lite::Scope* exec_scope() { return exec_scope_; }

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
    for (auto& x : passes) {
187 188
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
Y
Yan Chunwei 已提交
189
      CHECK(pass) << "Can not find pass: " << x;
190
      bool matched = false;
191
      for (const auto& place : valid_places_) {
192 193
        if (PassMatchesTarget(*pass, place.target)) {
          matched = true;
194 195
        }
      }
196
      matched = matched && PassMatchesKernels(*pass);
197
      if (!matched) {
198
        LOG(INFO) << "   - Skip " << x << " because the target does not match.";
199 200 201 202
      } else {
        pass->Apply(graph_);
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
203 204 205 206 207 208 209 210 211 212 213 214
    }
  }

 private:
  std::unique_ptr<mir::SSAGraph> graph_;
  std::vector<Place> valid_places_;
  lite::Scope* exec_scope_{};
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle