conditional_block_compute.cc 2.3 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/host/conditional_block_compute.h"
J
juncaipeng 已提交
16 17 18 19

namespace paddle {
namespace lite {
namespace kernels {
20
namespace host {
J
juncaipeng 已提交
21 22

void ConditionalBlockCompute::PrepareForRun() {
23 24 25
  auto& param = this->Param<param_t>();
  program_.reset(new RuntimeProgram(
      param.program_desc, param.exec_scope, param.block_idx));
J
juncaipeng 已提交
26
}
27

J
juncaipeng 已提交
28
void ConditionalBlockCompute::Run() {
29
  auto& param = this->Param<param_t>();
30 31 32
  for (auto& out : param.outs) {
    out->clear();
  }
J
juncaipeng 已提交
33 34 35 36 37 38
  bool need_run = true;
  if (param.is_scalar_condition) {
    auto* cond = param.cond;
    auto* cond_data = cond->data<bool>();
    need_run = cond_data[0];
  } else {
39 40 41
    for (auto input : param.inputs) {
      if (input == nullptr || !input->IsInitialized() ||
          input->dims().empty()) {
J
juncaipeng 已提交
42 43 44 45 46 47
        need_run = false;
        break;
      }
    }
  }
  if (need_run) {
48
    program_->Run();
J
juncaipeng 已提交
49 50 51
  }
}

52
}  // namespace host
J
juncaipeng 已提交
53 54 55 56 57
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conditional_block,
58 59 60 61
                     kHost,
                     kAny,
                     kAny,
                     paddle::lite::kernels::host::ConditionalBlockCompute,
J
juncaipeng 已提交
62
                     def)
63 64 65 66 67 68 69 70 71 72 73 74
    .BindInput("Input",
               {LiteType::GetTensorListTy(
                   TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindInput("Cond",
               {LiteType::GetTensorTy(
                   TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny), -1)})
    .BindOutput("Out",
                {LiteType::GetTensorListTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
    .BindOutput("Scope",
                {LiteType::GetTensorTy(
                    TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)})
J
juncaipeng 已提交
75
    .Finalize();