// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/kernels/host/conditional_block_compute.h" namespace paddle { namespace lite { namespace kernels { namespace host { void ConditionalBlockCompute::PrepareForRun() { auto& param = this->Param(); program_.reset(new RuntimeProgram( param.program_desc, param.exec_scope, param.block_idx)); } void ConditionalBlockCompute::Run() { auto& param = this->Param(); for (auto& out : param.outs) { out->clear(); } bool need_run = true; if (param.is_scalar_condition) { auto* cond = param.cond; auto* cond_data = cond->data(); need_run = cond_data[0]; } else { for (auto input : param.inputs) { if (input == nullptr || !input->IsInitialized() || input->dims().empty()) { need_run = false; break; } } } if (need_run) { program_->Run(); } } } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(conditional_block, kHost, kAny, kAny, paddle::lite::kernels::host::ConditionalBlockCompute, def) .BindInput("Input", {LiteType::GetTensorListTy( TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)}) .BindInput("Cond", {LiteType::GetTensorTy( TARGET(kHost), PRECISION(kBool), DATALAYOUT(kAny), -1)}) .BindOutput("Out", {LiteType::GetTensorListTy( TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)}) .BindOutput("Scope", {LiteType::GetTensorTy( TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny), -1)}) .Finalize();