reshape_compute.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
C
chonwhite 已提交
16 17 18

#include "lite/backends/fpga/KD/debugger.hpp"
#include "lite/kernels/fpga/reshape_compute.h"
19 20 21 22 23 24 25 26 27
#include "lite/operators/reshape_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

C
chonwhite 已提交
28
void FlattenCompute::Run() {
29 30 31
  auto& param = Param<operators::ReshapeParam>();
  auto x = param.x;
  auto output = param.output;
C
chonwhite 已提交
32
  output->mutable_data<float16>();
33
  auto output_dims = output->dims();
C
chonwhite 已提交
34 35 36 37
  if (param.inplace) {
    output->ShareDataWith(*x);
  } else {
    // output->CopyDataFrom(*x);
38
  }
C
chonwhite 已提交
39 40 41
  x->ZynqTensor()->unalignImage();
  // x->ZynqTensor()->saveToFile("fi", true);

C
chonwhite 已提交
42
  output->ZynqTensor()->copyFrom(x->ZynqTensor());
C
chonwhite 已提交
43 44 45
  // output->ZynqTensor()->saveToFile("fo", true);
  output->ZynqTensor()->flush();
  output->ZynqTensor()->setAligned(x->ZynqTensor()->aligned());
46
  output->Resize(output_dims);
C
chonwhite 已提交
47 48

#ifdef FPGA_PRINT_TENSOR
C
chonwhite 已提交
49
  Debugger::get_instance().registerOutput("flatten", output->ZynqTensor());
C
chonwhite 已提交
50 51 52
#endif
}

C
chonwhite 已提交
53
void ReshapeCompute::PrepareForRun() {
C
chonwhite 已提交
54 55 56 57 58 59 60
  auto& param = Param<operators::ReshapeParam>();
  auto x = param.x;
  auto output = param.output;
  auto output_dims = output->dims();

  output->Resize(output_dims);
  output->mutable_data<float16>();
C
chonwhite 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74
}

void ReshapeCompute::Run() {
  auto& param = Param<operators::ReshapeParam>();
  auto x = param.x;
  auto output = param.output;
  // auto output_dims = output->dims();

  // x->ZynqTensor()->invalidate();// TODO
  x->ZynqTensor()->unalignImage();
  x->ZynqTensor()->flush();

  // output->Resize(output_dims);
  // output->mutable_data<float16>();
C
chonwhite 已提交
75 76

  if (param.inplace) {
C
chonwhite 已提交
77
    // output->ShareDataWith(*x);
C
chonwhite 已提交
78 79 80 81 82 83 84
  } else {
    // output->CopyDataFrom(*x);
  }

  output->ZynqTensor()->copyFrom(x->ZynqTensor());
  // output->ZynqTensor()->saveToFile("ro", true);
  output->ZynqTensor()->flush();
C
chonwhite 已提交
85
// output->ZynqTensor()->setAligned(x->ZynqTensor()->aligned());
C
chonwhite 已提交
86

C
chonwhite 已提交
87
#ifdef FPGA_PRINT_TENSOR
C
chonwhite 已提交
88
  Debugger::get_instance().registerOutput("reshape", output->ZynqTensor());
C
chonwhite 已提交
89
#endif
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(reshape,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Shape",
C
chonwhite 已提交
108 109 110
               {LiteType::GetTensorTy(TARGET(kHost),
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(reshape2,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::ReshapeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Shape",
C
chonwhite 已提交
128 129 130
               {LiteType::GetTensorTy(TARGET(kHost),
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
131 132 133 134 135 136 137 138 139 140 141 142 143 144
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .BindOutput("XShape",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(flatten,
                     kFPGA,
                     kFP16,
                     kNHWC,
C
chonwhite 已提交
145
                     paddle::lite::kernels::fpga::FlattenCompute,
146 147 148 149 150 151
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Shape",
C
chonwhite 已提交
152 153 154
               {LiteType::GetTensorTy(TARGET(kHost),
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
155 156 157 158 159 160 161 162 163 164
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(flatten2,
                     kFPGA,
                     kFP16,
                     kNHWC,
C
chonwhite 已提交
165
                     paddle::lite::kernels::fpga::FlattenCompute,
166 167 168 169 170 171
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Shape",
C
chonwhite 已提交
172
               {LiteType::GetTensorTy(TARGET(kHost),
C
chonwhite 已提交
173 174
                                      PRECISION(kAny),
                                      DATALAYOUT(kAny))})
175 176 177 178 179 180 181 182 183
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .BindOutput("XShape",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();