// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/backends/fpga/KD/debugger.hpp" #include "lite/kernels/fpga/reshape_compute.h" #include "lite/operators/reshape_op.h" namespace paddle { namespace lite { namespace kernels { namespace fpga { using float16 = zynqmp::float16; void FlattenCompute::Run() { auto& param = Param(); auto x = param.x; auto output = param.output; output->mutable_data(); auto output_dims = output->dims(); if (param.inplace) { output->ShareDataWith(*x); } else { // output->CopyDataFrom(*x); } x->ZynqTensor()->unalignImage(); // x->ZynqTensor()->saveToFile("fi", true); output->ZynqTensor()->copyFrom(x->ZynqTensor()); // output->ZynqTensor()->saveToFile("fo", true); output->ZynqTensor()->flush(); output->ZynqTensor()->setAligned(x->ZynqTensor()->aligned()); output->Resize(output_dims); #ifdef FPGA_PRINT_TENSOR Debugger::get_instance().registerOutput("flatten", output->ZynqTensor()); #endif } void ReshapeCompute::PrepareForRun() { auto& param = Param(); auto x = param.x; auto output = param.output; auto output_dims = output->dims(); output->Resize(output_dims); output->mutable_data(); } void ReshapeCompute::Run() { auto& param = Param(); auto x = param.x; auto output = param.output; // auto output_dims = output->dims(); // x->ZynqTensor()->invalidate();// TODO x->ZynqTensor()->unalignImage(); x->ZynqTensor()->flush(); // output->Resize(output_dims); // output->mutable_data(); if (param.inplace) { // output->ShareDataWith(*x); } else { // output->CopyDataFrom(*x); } output->ZynqTensor()->copyFrom(x->ZynqTensor()); // output->ZynqTensor()->saveToFile("ro", true); output->ZynqTensor()->flush(); // output->ZynqTensor()->setAligned(x->ZynqTensor()->aligned()); #ifdef FPGA_PRINT_TENSOR Debugger::get_instance().registerOutput("reshape", output->ZynqTensor()); #endif } } // namespace fpga } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(reshape, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ReshapeCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(reshape2, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ReshapeCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(flatten, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::FlattenCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize(); REGISTER_LITE_KERNEL(flatten2, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::FlattenCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindInput("Shape", {LiteType::GetTensorTy(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kFPGA), PRECISION(kFP16), DATALAYOUT(kNHWC))}) .Finalize();