pool_kernel.cpp 2.0 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef POOL_OP

#include "operators/kernel/pool_kernel.h"

class PoolingArgs;
namespace paddle_mobile {
20 21 22
namespace operators {

template <>
N
nhzlx 已提交
23
bool PoolKernel<FPGA, float>::Init(PoolParam<FPGA> *param) {
Z
zhangyang 已提交
24
  auto *input = const_cast<Tensor *>(param->Input());
25
  auto input_ptr = input->data<float>();
26
  Tensor *output = param->Output();
Z
zhangyang 已提交
27
  fpga::format_fp16_ofm(output);
28
  auto output_ptr = output->mutable_data<float>();
29 30 31
  vector<int> ksize = param->Ksize();
  vector<int> strides = param->Strides();
  vector<int> paddings = param->Paddings();
qnqinan's avatar
qnqinan 已提交
32

Z
zhangyang 已提交
33
  fpga::PoolingArgs poolArgs = {0};
Z
zhangyang 已提交
34 35 36 37 38 39
  poolArgs.image.address = input_ptr;
  poolArgs.image.channels = (uint32_t)input->dims()[1];
  poolArgs.image.height = (uint32_t)input->dims()[2];
  poolArgs.image.width = (uint32_t)input->dims()[3];
  poolArgs.image.pad_height = (uint32_t)paddings[0];
  poolArgs.image.pad_width = (uint32_t)paddings[1];
Z
zhangyang 已提交
40
  poolArgs.image.scale_address = input->scale;
41
  poolArgs.output.address = output_ptr;
42
  poolArgs.output.scale_address = output->scale;
Z
zhangyang 已提交
43 44 45 46
  poolArgs.kernel.height = (uint32_t)ksize[0];
  poolArgs.kernel.width = (uint32_t)ksize[1];
  poolArgs.kernel.stride_h = (uint32_t)strides[0];
  poolArgs.kernel.stride_w = (uint32_t)strides[1];
47 48 49 50 51
  param->SetFpgaArgs(poolArgs);
  return true;
}

template <>
N
nhzlx 已提交
52
void PoolKernel<FPGA, float>::Compute(const PoolParam<FPGA> &param) const {
53 54 55
  fpga::ComputeFpgaPool(param.FpgaArgs());
}
}  // namespace operators
qnqinan's avatar
qnqinan 已提交
56 57
}  // namespace paddle_mobile

58
#endif