conv_buffer_compute.cc 12.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_buffer_compute.h"
16

Y
Yan Chunwei 已提交
17
#include <sstream>
18 19

#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ConvCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
45 46
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
47 48
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
49 50
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
51 52
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
H
HappyAngel 已提交
53
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
Y
Yan Chunwei 已提交
54 55
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

H
HappyAngel 已提交
56 57 58
  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3]));

Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];

  if (kernel_h == 1 && kernel_w == 1 && stride_h == 1 && stride_w == 1 &&
H
HappyAngel 已提交
72
      zero_pad && no_dilation && pad_equal) {
Y
Yan Chunwei 已提交
73
    // conv2d_1x1
74 75
    /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batched OpenCL kernel,
                 use gemm_batched_naive instead.
Y
Yan Chunwei 已提交
76
    kernel_func_names_.push_back("gemm_batch");
77 78
  */
    kernel_func_names_.push_back("gemm_batch_naive");
Y
Yan Chunwei 已提交
79 80
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
    if (relu_fused) {
81 82 83 84
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
85
    } else {
86
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
87 88
    }
    impl_ = &ConvCompute::Conv2d1x1;
H
HappyAngel 已提交
89
  } else if (pad_equal) {
Y
Yan Chunwei 已提交
90
    kernel_func_names_.push_back("im2col");
91 92
    /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batched OpenCL kernel,
                 use gemm_batched_naive instead.
Y
Yan Chunwei 已提交
93
    kernel_func_names_.push_back("gemm_batch");
94 95
  */
    kernel_func_names_.push_back("gemm_batch_naive");
Y
Yan Chunwei 已提交
96 97
    kernel_func_paths_.push_back("buffer/im2col_kernel.cl");
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
98
    build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
99
    if (relu_fused) {
100 101 102 103
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
104
    } else {
105
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
106 107 108 109 110
    }
    impl_ = &ConvCompute::GemmlikeConv2d;
    col_buffer_.reset(new lite::Tensor);
    col_buffer_->Resize({bs, c_in, kernel_h * kernel_w, h_out * w_out});
    col_buffer_->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
H
HappyAngel 已提交
111 112 113
  } else {
    LOG(FATAL) << "This pad not support ! " << paddings[0] << ", "
               << paddings[1] << ", " << paddings[2] << ", " << paddings[3];
Y
Yan Chunwei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  }

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvCompute::GemmlikeConv2d() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_in = x_dims[2];
  int w_in = x_dims[3];
H
HappyAngel 已提交
131 132
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
133 134 135 136 137
  int c_out = output_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
138 139
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
140 141
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
142 143
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

  auto* x_buf = param.x->data<float, cl::Buffer>();
  auto* filter_buf = param.filter->data<float, cl::Buffer>();
  auto* bias_buf = (param.bias == nullptr)
                       ? static_cast<cl::Buffer*>(nullptr)
                       : param.bias->data<float, cl::Buffer>();
  auto* output_buf =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  auto* col_buf = col_buffer_->mutable_data<float, cl::Buffer>();

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto img2col_kernel = context.cl_context()->GetKernel(kernel_key.str());

  int n_threads = c_in * h_out * w_out;
  int in_stride = c_in * h_in * w_in;
  int out_stride = c_in * kernel_h * kernel_w * h_out * w_out;
  int img_offset = 0;
  int col_offset = 0;
  int arg_idx = 0;
  cl_int status;
  for (int b = 0; b < bs; b++) {
    img_offset = b * in_stride;
    col_offset = b * out_stride;
    arg_idx = 0;
    status = img2col_kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, img_offset);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, n_threads);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, *col_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, col_offset);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{static_cast<size_t>(out_stride)};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        img2col_kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        nullptr);
    CL_CHECK_FATAL(status);
  }

  int m = c_out;
  int k = c_in * kernel_h * kernel_w;
  int n = h_out * w_out;
  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;
  kernel_key.str("");
  kernel_key << kernel_func_names_[1] << build_options_[1];
  auto gemm_kernel = context.cl_context()->GetKernel(kernel_key.str());
  GemmBatched(
      gemm_kernel, col_buf, filter_buf, bias_buf, output_buf, bs, m, n, k);
}

void ConvCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  const int batch_size = param.x->dims()[0];
  const int k = param.x->dims()[1];  // K: input_channel
  const int n = param.x->dims()[2] *
                param.x->dims()[3];       // N == X_HxW == input_h * input_w
  const int m = param.output->dims()[1];  // M: output_channel == filter number

  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;

  if (param.groups != 1) {
    LOG(FATAL) << "conv2d_1x1 with group > 1 not supported and param.groups = "
               << param.groups;
  }

  auto* x_d = param.x->data<float, cl::Buffer>();
  auto* filter_d = param.filter->data<float, cl::Buffer>();
  auto* bias_d = (param.bias == nullptr)
                     ? static_cast<cl::Buffer*>(nullptr)
                     : param.bias->data<float, cl::Buffer>();
  auto* output_d =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_.front() << build_options_.front();
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k);
}
// a: filter_d ==> <m, k> <=> <oc, ic>
// b: x_d      ==> <k, n> <=> <ic, ih*iw>
// c: output_d ==> <m, n> <=> <oc, ih*iw>
void ConvCompute::GemmBatched(cl::Kernel& kernel,
                              const cl::Buffer* x_d,
                              const cl::Buffer* filter_d,
                              const cl::Buffer* bias_d,
                              cl::Buffer* output_d,
                              const int batch_size,
                              const int m,
                              const int n,
                              const int k) {
269 270 271 272 273 274 275 276
  /* TODO(ysh329): CL_OUT_OF_MEMORY when use gemm_batch OpenCL kernel,
                   use gemm_batch_naive instead.
    auto global_work_size = cl::NDRange{static_cast<size_t>((m + 7) / 8),
                                        static_cast<size_t>((n + 3) / 4),
                                        static_cast<size_t>(batch_size)};
  */
  auto global_work_size = cl::NDRange{static_cast<size_t>(m),
                                      static_cast<size_t>(n),
Y
Yan Chunwei 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                                      static_cast<size_t>(batch_size)};
  auto local_work_size = cl::NDRange{16, 16};  // cl::NullRange;

  auto& context = ctx_->As<OpenCLContext>();
  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, *filter_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *x_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *bias_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *output_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, m);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, n);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, k);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch_size);
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      local_work_size,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);

  context.cl_wait_list()->emplace(output_d, event_);
}

void ConvCompute::Run() { (this->*impl_)(); }

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
                     kFloat,
322 323 324 325 326 327 328
                     kNCHW,
                     paddle::lite::kernels::opencl::ConvCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
329
    .Finalize();