conv_buffer_compute.cc 11.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_buffer_compute.h"
16

Y
Yan Chunwei 已提交
17
#include <sstream>
18 19

#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ConvCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
45 46
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
47 48
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
49 50
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
51 52
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
H
HappyAngel 已提交
53
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
Y
Yan Chunwei 已提交
54 55
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

H
HappyAngel 已提交
56 57 58
  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[2] == paddings[3]));

Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71
  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];

  if (kernel_h == 1 && kernel_w == 1 && stride_h == 1 && stride_w == 1 &&
H
HappyAngel 已提交
72
      zero_pad && no_dilation && pad_equal) {
Y
Yan Chunwei 已提交
73 74 75 76
    // conv2d_1x1
    kernel_func_names_.push_back("gemm_batch");
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
    if (relu_fused) {
77 78 79 80
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
81
    } else {
82
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
83 84
    }
    impl_ = &ConvCompute::Conv2d1x1;
H
HappyAngel 已提交
85
  } else if (pad_equal) {
Y
Yan Chunwei 已提交
86 87 88 89
    kernel_func_names_.push_back("im2col");
    kernel_func_names_.push_back("gemm_batch");
    kernel_func_paths_.push_back("buffer/im2col_kernel.cl");
    kernel_func_paths_.push_back("buffer/fc_kernel.cl");
90
    build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
91
    if (relu_fused) {
92 93 94 95
      build_options_.push_back("-DCL_DTYPE_float -DRELU");
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_.push_back("-DCL_DTYPE_float -DRELU6");
Y
Yan Chunwei 已提交
96
    } else {
97
      build_options_.push_back("-DCL_DTYPE_float");
Y
Yan Chunwei 已提交
98 99 100 101 102
    }
    impl_ = &ConvCompute::GemmlikeConv2d;
    col_buffer_.reset(new lite::Tensor);
    col_buffer_->Resize({bs, c_in, kernel_h * kernel_w, h_out * w_out});
    col_buffer_->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
H
HappyAngel 已提交
103 104 105
  } else {
    LOG(FATAL) << "This pad not support ! " << paddings[0] << ", "
               << paddings[1] << ", " << paddings[2] << ", " << paddings[3];
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  }

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvCompute::GemmlikeConv2d() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_in = x_dims[2];
  int w_in = x_dims[3];
H
HappyAngel 已提交
123 124
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
Y
Yan Chunwei 已提交
125 126 127 128 129
  int c_out = output_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];
H
HappyAngel 已提交
130 131
  int pad_h = paddings[0];
  int pad_w = paddings[2];
Y
Yan Chunwei 已提交
132 133
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
H
HappyAngel 已提交
134 135
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

  auto* x_buf = param.x->data<float, cl::Buffer>();
  auto* filter_buf = param.filter->data<float, cl::Buffer>();
  auto* bias_buf = (param.bias == nullptr)
                       ? static_cast<cl::Buffer*>(nullptr)
                       : param.bias->data<float, cl::Buffer>();
  auto* output_buf =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
  auto* col_buf = col_buffer_->mutable_data<float, cl::Buffer>();

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto img2col_kernel = context.cl_context()->GetKernel(kernel_key.str());

  int n_threads = c_in * h_out * w_out;
  int in_stride = c_in * h_in * w_in;
  int out_stride = c_in * kernel_h * kernel_w * h_out * w_out;
  int img_offset = 0;
  int col_offset = 0;
  int arg_idx = 0;
  cl_int status;
  for (int b = 0; b < bs; b++) {
    img_offset = b * in_stride;
    col_offset = b * out_stride;
    arg_idx = 0;
    status = img2col_kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, img_offset);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, n_threads);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_in);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, kernel_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, pad_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, stride_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_h);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, dilation_w);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, h_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, w_out);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, *col_buf);
    CL_CHECK_FATAL(status);
    status = img2col_kernel.setArg(++arg_idx, col_offset);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{static_cast<size_t>(out_stride)};
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        img2col_kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        nullptr);
    CL_CHECK_FATAL(status);
  }

  int m = c_out;
  int k = c_in * kernel_h * kernel_w;
  int n = h_out * w_out;
  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;
  kernel_key.str("");
  kernel_key << kernel_func_names_[1] << build_options_[1];
  auto gemm_kernel = context.cl_context()->GetKernel(kernel_key.str());
  GemmBatched(
      gemm_kernel, col_buf, filter_buf, bias_buf, output_buf, bs, m, n, k);
}

void ConvCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  const int batch_size = param.x->dims()[0];
  const int k = param.x->dims()[1];  // K: input_channel
  const int n = param.x->dims()[2] *
                param.x->dims()[3];       // N == X_HxW == input_h * input_w
  const int m = param.output->dims()[1];  // M: output_channel == filter number

  VLOG(4) << "m = " << m << " n = " << n << " k = " << k;

  if (param.groups != 1) {
    LOG(FATAL) << "conv2d_1x1 with group > 1 not supported and param.groups = "
               << param.groups;
  }

  auto* x_d = param.x->data<float, cl::Buffer>();
  auto* filter_d = param.filter->data<float, cl::Buffer>();
  auto* bias_d = (param.bias == nullptr)
                     ? static_cast<cl::Buffer*>(nullptr)
                     : param.bias->data<float, cl::Buffer>();
  auto* output_d =
      param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

  auto& context = ctx_->As<OpenCLContext>();
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_.front() << build_options_.front();
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  GemmBatched(kernel, x_d, filter_d, bias_d, output_d, batch_size, m, n, k);
}
// a: filter_d ==> <m, k> <=> <oc, ic>
// b: x_d      ==> <k, n> <=> <ic, ih*iw>
// c: output_d ==> <m, n> <=> <oc, ih*iw>
void ConvCompute::GemmBatched(cl::Kernel& kernel,
                              const cl::Buffer* x_d,
                              const cl::Buffer* filter_d,
                              const cl::Buffer* bias_d,
                              cl::Buffer* output_d,
                              const int batch_size,
                              const int m,
                              const int n,
                              const int k) {
  auto global_work_size = cl::NDRange{static_cast<size_t>((m + 7) / 8),
                                      static_cast<size_t>((n + 3) / 4),
                                      static_cast<size_t>(batch_size)};
  auto local_work_size = cl::NDRange{16, 16};  // cl::NullRange;

  auto& context = ctx_->As<OpenCLContext>();
  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, *filter_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *x_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *bias_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *output_d);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, m);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, n);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, k);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, batch_size);
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      local_work_size,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);

  context.cl_wait_list()->emplace(output_d, event_);
}

void ConvCompute::Run() { (this->*impl_)(); }

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
                     kFloat,
308 309 310 311 312 313 314
                     kNCHW,
                     paddle::lite::kernels::opencl::ConvCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
315
    .Finalize();