mul_compute.cc 3.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/mul_compute.h"
#include <vector>
17
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void MulCompute::PrepareForRun() {
  auto& ctx = this->ctx_->template As<ARMContext>();
}

void MulCompute::Run() {
  auto& param = Param<param_t>();

  const auto* x_data = param.x->data<float>();
  const auto* y_data = param.y->data<float>();
  auto* o_data = param.output->mutable_data<float>();

  m_ = static_cast<int>(
      param.x->dims().Slice(0, param.x_num_col_dims).production());
  int x_w =
      static_cast<int>(param.x->dims()
                           .Slice(param.x_num_col_dims, param.x->dims().size())
                           .production());
  int y_h = static_cast<int>(
      param.y->dims().Slice(0, param.y_num_col_dims).production());
  n_ = static_cast<int>(param.y->dims()
                            .Slice(param.y_num_col_dims, param.y->dims().size())
                            .production());

  CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h";
  k_ = x_w;
51
  auto& ctx = this->ctx_->template As<ARMContext>();
Y
Yan Chunwei 已提交
52
  if (n_ == 1) {
53 54 55 56 57 58 59 60 61 62 63
    lite::arm::math::sgemv(x_data,
                           y_data,
                           o_data,
                           false,
                           m_,
                           k_,
                           false,
                           nullptr,
                           false,
                           lite_api::ActivationType::kIndentity,
                           &ctx);
Y
Yan Chunwei 已提交
64 65 66

  } else {
    constexpr bool is_tranposed_y = false;
67
    int hblock = lite::arm::math::get_hblock(&ctx);
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76 77 78
    int m_round = hblock * ((m_ + hblock - 1) / hblock);
    ctx.ExtendWorkspace(m_round * k_ * sizeof(float));

    float* packed_x = static_cast<float*>(ctx.workspace_data<float>()) +
                      ctx.llc_size() / sizeof(float);
    lite::arm::math::prepackA(
        packed_x, x_data, 1.f, k_, 0, m_, 0, k_, false, &ctx);
    int ldb = n_;
    if (is_tranposed_y) {
      ldb = k_;
    }
79 80
    operators::ActivationParam act_param;
    act_param.has_active = false;
Y
Yan Chunwei 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    lite::arm::math::sgemm_prepack(is_tranposed_y,
                                   m_,
                                   n_,
                                   k_,
                                   packed_x,
                                   y_data,
                                   ldb,
                                   0.f,
                                   o_data,
                                   n_,
                                   nullptr,
                                   false,
93
                                   act_param,
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                                   &ctx);
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    mul, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::MulCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();