提交 3d5e261b 编写于 作者: Y yiicy 提交者: GitHub

[ARM] sgemv support transA, test=develop (#2453)

* [ARM] sgemv support transA, test=develop

* add sgemv ut, test=develop
上级 a4f47d7d
......@@ -202,7 +202,8 @@ void conv1x1s1_gemm(const float* i_data,
k,
flag_bias,
bias_group,
flag_relu);
flag_relu,
ctx);
} else {
sgemm_prepack(false,
m,
......@@ -395,7 +396,8 @@ void conv_im2col_gemm(const float* i_data,
k,
flag_bias,
bias_group,
flag_relu);
flag_relu,
ctx);
} else {
int ldb = n;
sgemm_prepack(false,
......
此差异已折叠。
......@@ -15,6 +15,8 @@
#pragma once
#include <cmath>
#include "lite/core/context.h"
#include "lite/core/device_info.h"
namespace paddle {
namespace lite {
......@@ -28,9 +30,10 @@ bool sgemv(const float* A,
bool transA,
int M,
int N,
bool is_bias = false,
const float* bias = nullptr,
bool is_relu = false);
bool is_bias,
const float* bias,
bool is_relu,
const ARMContext* ctx);
} // namespace math
} // namespace arm
......
......@@ -127,7 +127,8 @@ void FcCompute<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
k_,
param.bias != nullptr,
b_data,
false);
false,
&ctx);
}
}
}
......
......@@ -232,7 +232,7 @@ void MatMulCompute::Run() {
int ldc = n_;
if (n_ == 1) {
lite::arm::math::sgemv(
x_data, y_data, o_data, false, m_, k_, false, nullptr, false);
x_data, y_data, o_data, false, m_, k_, false, nullptr, false, &ctx);
if (fabsf(alpha - 1.f) > 1e-8f) {
for (size_t i = 0; i < param.Out->dims().production(); ++i) {
o_data[i] *= alpha;
......
......@@ -48,14 +48,13 @@ void MulCompute::Run() {
CHECK_EQ(x_w, y_h) << "x_w must be equal with y_h";
k_ = x_w;
auto& ctx = this->ctx_->template As<ARMContext>();
if (n_ == 1) {
lite::arm::math::sgemv(
x_data, y_data, o_data, false, m_, k_, false, nullptr, false);
x_data, y_data, o_data, false, m_, k_, false, nullptr, false, &ctx);
} else {
constexpr bool is_tranposed_y = false;
auto& ctx = this->ctx_->template As<ARMContext>();
int hblock = lite::arm::math::get_hblock(&ctx);
int m_round = hblock * ((m_ + hblock - 1) / hblock);
ctx.ExtendWorkspace(m_round * k_ * sizeof(float));
......
if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH_ARM))
lite_cc_test(sgemm_compute_test SRCS sgemm_compute_test.cc DEPS arena_framework ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(sgemv_compute_test SRCS sgemv_compute_test.cc DEPS arena_framework ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(gemm_int8_compute_test SRCS gemm_int8_compute_test.cc DEPS arena_framework ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(gemv_int8_compute_test SRCS gemv_int8_compute_test.cc DEPS arena_framework ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(conv_compute_test SRCS conv_compute_test.cc DEPS arena_framework ${arm_kernels} ${lite_ops} ${host_kernels})
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif // LITE_WITH_ARM
#include "lite/core/context.h"
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"
#include "lite/tests/utils/timer.h"
typedef paddle::lite::Tensor Tensor;
DEFINE_int32(cluster, 3, "cluster id");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, true, "do all tests");
DEFINE_bool(check_result, true, "check the result");
DEFINE_int32(M, 512, "sgemv: M");
DEFINE_int32(K, 512, "sgemv: K");
DEFINE_bool(traA, false, "gemv: A transpose");
DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");
bool test_sgemv(
bool tra, int m, int k, bool has_bias, bool has_relu, int cls, int ths) {
Tensor ta;
Tensor tb;
Tensor tc;
Tensor tc_basic;
Tensor tbias;
ta.Resize({m, k});
tb.Resize({k, 1});
tc.Resize({m, 1});
tc_basic.Resize({m, 1});
tbias.Resize({m});
ta.set_precision(PRECISION(kFloat));
tb.set_precision(PRECISION(kFloat));
tc.set_precision(PRECISION(kFloat));
tc_basic.set_precision(PRECISION(kFloat));
tbias.set_precision(PRECISION(kFloat));
fill_tensor_rand(ta, -1.f, 1.f);
// fill_tensor_const(ta, 1.f);
fill_tensor_rand(tb, -1.f, 1.f);
// fill_tensor_const(tb, 1.f);
fill_tensor_rand(tbias, -1.f, 1.f);
LOG(INFO) << "sgemv M: " << m << ", K: " << k
<< ", transA: " << (tra ? "true" : "false")
<< ", relu: " << (has_relu ? "true" : "false")
<< ", bias: " << (has_bias ? "true" : "false");
#ifdef LITE_WITH_ARM
auto da = ta.mutable_data<float>();
auto db = tb.mutable_data<float>();
auto dc = tc.mutable_data<float>();
auto dc_basic = tc_basic.mutable_data<float>();
auto dbias = tbias.mutable_data<float>();
if (FLAGS_check_result) {
basic_gemv(
m, k, da, db, dbias, dc_basic, 1.f, 0.f, tra, has_bias, has_relu);
}
paddle::lite::Timer t0;
//! compute
double ops = 2.0 * m * k;
std::unique_ptr<paddle::lite::KernelContext> ctx1(
new paddle::lite::KernelContext);
auto& ctx = ctx1->As<paddle::lite::ARMContext>();
ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
/// warmup
for (int j = 0; j < FLAGS_warmup; ++j) {
paddle::lite::arm::math::sgemv(
da, db, dc, tra, m, k, has_bias, dbias, has_relu, &ctx);
}
t0.clear();
for (int i = 0; i < FLAGS_repeats; ++i) {
t0.start();
paddle::lite::arm::math::sgemv(
da, db, dc, tra, m, k, has_bias, dbias, has_relu, &ctx);
t0.end();
}
LOG(INFO) << "gemv output: M: " << m << ", K: " << k << ", cluster: " << cls
<< ", threads: " << ths << ", GOPS: " << ops * 1e-9f
<< " GOPS, avg time: " << t0.get_average_ms()
<< " ms, min time: " << t0.get_min_time()
<< " ms, mean GOPs: " << ops * 1e-6f / t0.get_average_ms()
<< " GOPs, max GOPs: " << ops * 1e-6f / t0.get_min_time()
<< " GOPs";
if (FLAGS_check_result) {
double max_ratio = 0;
double max_diff = 0;
/// fp32 result
tensor_cmp_host(tc_basic, tc, max_ratio, max_diff);
LOG(INFO) << "compare result, max diff: " << max_diff
<< ", max ratio: " << max_ratio;
if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
Tensor tdiff;
tdiff.set_precision(PRECISION(kFloat));
tdiff.Resize(tc.dims());
tensor_diff(tc_basic, tc, tdiff);
LOG(INFO) << "basic result: ";
print_tensor(tc_basic);
LOG(INFO) << "saber result: ";
print_tensor(tc);
LOG(INFO) << "diff result: ";
print_tensor(tdiff);
return false;
}
}
#endif
return true;
}
TEST(TestLiteSgemv, Sgemv) {
if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
paddle::lite::DeviceInfo::Init();
#endif
LOG(INFO) << "run basic sgemv test";
for (auto& m : {1, 3, 8, 21, 32, 397}) {
for (auto& k : {1, 3, 8, 17, 59, 234}) {
for (auto& tra : {true, false}) {
for (auto& has_bias : {false, true}) {
for (auto& has_relu : {false, true}) {
for (auto& th : {1, 2, 4}) {
auto flag = test_sgemv(
tra, m, k, has_bias, has_relu, FLAGS_cluster, th);
if (flag) {
LOG(INFO) << "test m = " << m << ", k=" << k
<< ", bias: " << (has_bias ? "true" : "false")
<< ", relu: " << (has_relu ? "true" : "false")
<< ", trans A: " << (tra ? "true" : "false")
<< ", threads: " << th << " passed\n";
} else {
LOG(FATAL) << "test m = " << m << ", k=" << k
<< ", bias: " << (has_bias ? "true" : "false")
<< ", relu: " << (has_relu ? "true" : "false")
<< ", trans A: " << (tra ? "true" : "false")
<< ", threads: " << th << " failed\n";
}
}
}
}
}
}
}
}
}
TEST(TestSgemvCustom, Sgemv_custom) {
#ifdef LITE_WITH_ARM
paddle::lite::DeviceInfo::Init();
#endif
auto flag = test_sgemv(FLAGS_traA,
FLAGS_M,
FLAGS_K,
FLAGS_flag_bias,
FLAGS_flag_relu,
FLAGS_cluster,
FLAGS_threads);
if (!flag) {
LOG(FATAL) << "test m = " << FLAGS_M << ", k=" << FLAGS_K
<< ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
<< ", relu: " << FLAGS_flag_relu << " failed!!";
}
LOG(INFO) << "test m = " << FLAGS_M << ", k=" << FLAGS_K
<< ", trans A: " << FLAGS_traA << ", bias: " << FLAGS_flag_bias
<< ", relu: " << FLAGS_flag_relu << " passed!!";
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册