slice_compute.h 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <Eigen/Core>
#include <algorithm>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/fluid/eigen.h"
#include "lite/operators/relu_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
inline std::vector<int> get_new_data_from_tensorlist(
    const std::vector<lite::Tensor*>& list_new_data_tensor) {
  // get tensor from
  std::vector<int> vec_new_data;
  for (size_t i = 0; i < list_new_data_tensor.size(); ++i) {
    auto tensor = list_new_data_tensor[i];
    CHECK_EQ(tensor->dims(), DDim({1})) << "shape of dim tensor should be [1]";
    vec_new_data.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
  }
  return vec_new_data;
}

inline std::vector<int> get_new_data_from_tensor(
    const Tensor* new_data_tensor) {
  std::vector<int> vec_new_data;
  auto* new_data = new_data_tensor->data<int>();
  vec_new_data =
      std::vector<int>(new_data, new_data + new_data_tensor->numel());
  return vec_new_data;
}

52 53 54 55 56 57
template <size_t D>
void slice_compute(const lite::Tensor* in,
                   lite::Tensor* out,
                   std::vector<int> axes,
                   std::vector<int> starts,
                   std::vector<int> ends,
58 59 60 61 62 63
                   std::vector<int> decrease_axis,
                   lite::Tensor* StartsTensor,
                   lite::Tensor* EndsTensor,
                   std::vector<lite::Tensor*> StartsTensorList,
                   std::vector<lite::Tensor*> EndsTensorList,
                   std::vector<int> infer_flags) {
64 65 66
  auto out_dims = out->dims();
  auto in_dims = in->dims();

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  bool need_infer = false;
  if (StartsTensor || EndsTensor) {
    need_infer = true;
  } else if (StartsTensorList.size() > 0 || EndsTensorList.size() > 0) {
    need_infer = true;
  }

  if (need_infer) {
    if (StartsTensor) {
      starts = get_new_data_from_tensor(StartsTensor);
    } else if (StartsTensorList.size() > 0) {
      starts = get_new_data_from_tensorlist(StartsTensorList);
    }
    CHECK_EQ(starts.size(), axes.size())
        << "The size of starts must be equal to the size of axes.";
    if (EndsTensor) {
      ends = get_new_data_from_tensor(EndsTensor);
    } else if (EndsTensorList.size() > 0) {
      ends = get_new_data_from_tensorlist(EndsTensorList);
    }
    CHECK_EQ(ends.size(), axes.size())
        << "The size of ends must be equal to the size of axes.";
    out_dims = in_dims;
    int dim_value, start, end;
    for (size_t i = 0; i < axes.size(); ++i) {
      dim_value = out_dims[axes[i]];
      if (dim_value > 0) {
        // when end = start + 1 and start == -1
        if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
          auto ret =
              std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
          if (ret != decrease_axis.end()) {
            ends[i] = 10000000;
          }
        }

        start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
        end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
        start = std::max(start, 0);
        end = std::max(end, 0);
        end = std::min(end, dim_value);
        CHECK_GT(end, start) << "end should greater than start";
        out_dims[axes[i]] = end - start;
      }
    }
    out->Resize(out_dims);
    // generate new shape
    if (decrease_axis.size() > 0) {
      std::vector<int64_t> new_out_shape;
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        CHECK_EQ(out_dims[decrease_axis[i]], 1) << "decrease dim should be 1";
        out_dims[decrease_axis[i]] = 0;
      }

      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }

      DDim new_dims;
      new_dims.ConstructFrom(new_out_shape);
      out_dims = new_dims;
    }
  }

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  // resize out_dims
  if (decrease_axis.size() > 0) {
    if (decrease_axis.size() == (size_t)in_dims.size()) {
      std::vector<int64_t> vec_origin_out_shape(decrease_axis.size(), 1);
      // lite::DDim dims(vec_origin_out_shape);
      out->Resize(vec_origin_out_shape);
    } else {
      std::vector<int64_t> vec_origin_out_shape(
          out_dims.size() + decrease_axis.size(), -1);
      for (size_t i = 0; i < decrease_axis.size(); ++i) {
        vec_origin_out_shape[decrease_axis[i]] = 1;
      }
      int index = 0;
      for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) {
        if (-1 == vec_origin_out_shape[i]) {
          vec_origin_out_shape[i] = out_dims[index];
          ++index;
        }
      }
      // lite::DDim dims(vec_origin_out_shape);
      out->Resize(vec_origin_out_shape);
    }
  }

  out->mutable_data<float>(lite::TargetType::kX86);

  auto new_out_dims = out->dims();
  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      lite::fluid::EigenTensor<float, D, Eigen::RowMajor, Eigen::DenseIndex>::
          From(*in, in->dims());
  auto out_t =
      lite::fluid::EigenTensor<float, D, Eigen::RowMajor, Eigen::DenseIndex>::
          From(*out, new_out_dims);
  out_t = in_t.slice(offsets, extents);

  out->Resize(out_dims);
}

template <typename T>
void slice_compute_(const lite::Tensor* Input,
                    lite::Tensor* Out,
                    std::vector<int> axes,
                    std::vector<int> starts,
                    std::vector<int> ends,
195 196 197 198 199 200
                    std::vector<int> decrease_axis,
                    lite::Tensor* StartsTensor,
                    lite::Tensor* EndsTensor,
                    std::vector<lite::Tensor*> StartsTensorList,
                    std::vector<lite::Tensor*> EndsTensorList,
                    std::vector<int> infer_flags) {
201 202 203
  int rank = Input->dims().size();
  switch (rank) {
    case 1:
204 205 206 207 208 209 210 211 212 213 214
      slice_compute<1>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
215 216
      break;
    case 2:
217 218 219 220 221 222 223 224 225 226 227
      slice_compute<2>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
228 229
      break;
    case 3:
230 231 232 233 234 235 236 237 238 239 240
      slice_compute<3>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
241 242
      break;
    case 4:
243 244 245 246 247 248 249 250 251 252 253
      slice_compute<4>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
254 255
      break;
    case 5:
256 257 258 259 260 261 262 263 264 265 266
      slice_compute<5>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
267 268
      break;
    case 6:
269 270 271 272 273 274 275 276 277 278 279
      slice_compute<6>(Input,
                       Out,
                       axes,
                       starts,
                       ends,
                       decrease_axis,
                       StartsTensor,
                       EndsTensor,
                       StartsTensorList,
                       EndsTensorList,
                       infer_flags);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
      break;
  }
}

template <typename T>
class SliceCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::SliceParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    slice_compute_<T>(param.X,
                      param.Out,
                      param.axes,
                      param.starts,
                      param.ends,
296 297 298 299 300 301
                      param.decrease_axis,
                      param.StartsTensor,
                      param.EndsTensor,
                      param.StartsTensorList,
                      param.EndsTensorList,
                      param.infer_flags);
302 303 304 305 306 307 308 309 310
  }

  virtual ~SliceCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle