// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "lite/core/kernel.h" #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/core/type_system.h" #include "lite/fluid/eigen.h" #include "lite/operators/relu_op.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { inline std::vector get_new_data_from_tensorlist( const std::vector& list_new_data_tensor) { // get tensor from std::vector vec_new_data; for (size_t i = 0; i < list_new_data_tensor.size(); ++i) { auto tensor = list_new_data_tensor[i]; CHECK_EQ(tensor->dims(), DDim({1})) << "shape of dim tensor should be [1]"; vec_new_data.push_back(static_cast(*tensor->data())); } return vec_new_data; } inline std::vector get_new_data_from_tensor( const Tensor* new_data_tensor) { std::vector vec_new_data; auto* new_data = new_data_tensor->data(); vec_new_data = std::vector(new_data, new_data + new_data_tensor->numel()); return vec_new_data; } template void slice_compute(const lite::Tensor* in, lite::Tensor* out, std::vector axes, std::vector starts, std::vector ends, std::vector decrease_axis, lite::Tensor* StartsTensor, lite::Tensor* EndsTensor, std::vector StartsTensorList, std::vector EndsTensorList, std::vector infer_flags) { auto out_dims = out->dims(); auto in_dims = in->dims(); bool need_infer = false; if (StartsTensor || EndsTensor) { need_infer = true; } else if (StartsTensorList.size() > 0 || EndsTensorList.size() > 0) { need_infer = true; } if (need_infer) { if (StartsTensor) { starts = get_new_data_from_tensor(StartsTensor); } else if (StartsTensorList.size() > 0) { starts = get_new_data_from_tensorlist(StartsTensorList); } CHECK_EQ(starts.size(), axes.size()) << "The size of starts must be equal to the size of axes."; if (EndsTensor) { ends = get_new_data_from_tensor(EndsTensor); } else if (EndsTensorList.size() > 0) { ends = get_new_data_from_tensorlist(EndsTensorList); } CHECK_EQ(ends.size(), axes.size()) << "The size of ends must be equal to the size of axes."; out_dims = in_dims; int dim_value, start, end; for (size_t i = 0; i < axes.size(); ++i) { dim_value = out_dims[axes[i]]; if (dim_value > 0) { // when end = start + 1 and start == -1 if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) { auto ret = std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]); if (ret != decrease_axis.end()) { ends[i] = 10000000; } } start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; start = std::max(start, 0); end = std::max(end, 0); end = std::min(end, dim_value); CHECK_GT(end, start) << "end should greater than start"; out_dims[axes[i]] = end - start; } } out->Resize(out_dims); // generate new shape if (decrease_axis.size() > 0) { std::vector new_out_shape; for (size_t i = 0; i < decrease_axis.size(); ++i) { CHECK_EQ(out_dims[decrease_axis[i]], 1) << "decrease dim should be 1"; out_dims[decrease_axis[i]] = 0; } for (int i = 0; i < out_dims.size(); ++i) { if (out_dims[i] != 0) { new_out_shape.push_back(out_dims[i]); } } if (new_out_shape.size() == 0) { new_out_shape.push_back(1); } DDim new_dims; new_dims.ConstructFrom(new_out_shape); out_dims = new_dims; } } // resize out_dims if (decrease_axis.size() > 0) { if (decrease_axis.size() == (size_t)in_dims.size()) { std::vector vec_origin_out_shape(decrease_axis.size(), 1); // lite::DDim dims(vec_origin_out_shape); out->Resize(vec_origin_out_shape); } else { std::vector vec_origin_out_shape( out_dims.size() + decrease_axis.size(), -1); for (size_t i = 0; i < decrease_axis.size(); ++i) { vec_origin_out_shape[decrease_axis[i]] = 1; } int index = 0; for (size_t i = 0; i < vec_origin_out_shape.size(); ++i) { if (-1 == vec_origin_out_shape[i]) { vec_origin_out_shape[i] = out_dims[index]; ++index; } } // lite::DDim dims(vec_origin_out_shape); out->Resize(vec_origin_out_shape); } } out->mutable_data(lite::TargetType::kX86); auto new_out_dims = out->dims(); auto offsets = Eigen::array(); auto extents = Eigen::array(); for (size_t i = 0; i < D; ++i) { offsets[i] = 0; extents[i] = new_out_dims[i]; } int start; for (size_t i = 0; i < axes.size(); ++i) { start = starts[i]; if (start < 0) { start = (start + in_dims[axes[i]]); } start = std::max(start, 0); offsets[axes[i]] = start; } auto in_t = lite::fluid::EigenTensor:: From(*in, in->dims()); auto out_t = lite::fluid::EigenTensor:: From(*out, new_out_dims); out_t = in_t.slice(offsets, extents); out->Resize(out_dims); } template void slice_compute_(const lite::Tensor* Input, lite::Tensor* Out, std::vector axes, std::vector starts, std::vector ends, std::vector decrease_axis, lite::Tensor* StartsTensor, lite::Tensor* EndsTensor, std::vector StartsTensorList, std::vector EndsTensorList, std::vector infer_flags) { int rank = Input->dims().size(); switch (rank) { case 1: slice_compute<1>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; case 2: slice_compute<2>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; case 3: slice_compute<3>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; case 4: slice_compute<4>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; case 5: slice_compute<5>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; case 6: slice_compute<6>(Input, Out, axes, starts, ends, decrease_axis, StartsTensor, EndsTensor, StartsTensorList, EndsTensorList, infer_flags); break; } } template class SliceCompute : public KernelLite { public: using param_t = operators::SliceParam; void Run() override { auto& param = *param_.get_mutable(); slice_compute_(param.X, param.Out, param.axes, param.starts, param.ends, param.decrease_axis, param.StartsTensor, param.EndsTensor, param.StartsTensorList, param.EndsTensorList, param.infer_flags); } virtual ~SliceCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle