framework.h 8.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <gtest/gtest.h>
#include <time.h>
#include <algorithm>
#include <chrono>  // NOLINT
20
#include <cmath>
Y
Yan Chunwei 已提交
21 22 23
#include <iomanip>
#include <memory>
#include <string>
J
juncaipeng 已提交
24
#include <unordered_map>
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/program.h"
#include "lite/core/scope.h"
#include "lite/core/types.h"
#include "lite/model_parser/cpp/op_desc.h"

namespace paddle {
namespace lite {
namespace arena {

/*
 * Init data and prepare the op.
 */
class TestCase {
 public:
  explicit TestCase(const Place& place, const std::string& alias)
      : place_(place), scope_(new Scope), alias_(alias) {
    ctx_ = ContextScheduler::Global().NewContext(place_.target);
  }
46
  virtual ~TestCase();
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

  void Prepare() {
    PrepareScopes();
    PrepareData();
    op_desc_.reset(new cpp::OpDesc);
    PrepareOpDesc(op_desc_.get());

    PrepareOutputsForInstruction();
    CreateInstruction();
    PrepareInputsForInstruction();
  }

  /// Run the target instruction, that is run the test operator.
  void RunInstruction() { instruction_->Run(); }

  KernelContext* context() { return ctx_.get(); }

  /// The baseline should be implemented, which acts similar to an operator,
  /// that is take several tensors as input and output several tensors as
  /// output.
  virtual void RunBaseline(Scope* scope) = 0;

69
  // checkout the precision of the two tensors with type T. b_tensor is baseline
70 71 72 73 74
  template <typename T>
  bool CheckTensorPrecision(const Tensor* a_tensor,
                            const Tensor* b_tensor,
                            float abs_error);

75 76 77 78 79 80
  // checkout the precision of the two tensors. b_tensor is baseline
  bool CheckPrecision(const Tensor* a_tensor,
                      const Tensor* b_tensor,
                      float abs_error,
                      PrecisionType precision_type);

81
  /// Check the precision of the output variables. It will compare the same
82 83 84 85 86
  /// tensor (or all tensors of the tensor_array) in two scopes, one of the
  /// instruction execution, and the other for the baseline.
  bool CheckPrecision(const std::string& var_name,
                      float abs_error,
                      PrecisionType precision_type);
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  const cpp::OpDesc& op_desc() { return *op_desc_; }

  // Check whether the output tensor is consistent with the output definition in
  // kernel registry.
  void CheckKernelConsistWithDefinition() {}

  Scope& scope() { return *scope_; }

  Scope* baseline_scope() { return base_scope_; }
  Scope* inst_scope() { return inst_scope_; }

 protected:
  // Prepare inputs in scope() for Tester.
  virtual void PrepareData() = 0;

  /// Prepare a tensor in host. The tensors will be created in scope_.
  /// Need to specify the targets other than X86 or ARM.
  template <typename T>
  void SetCommonTensor(const std::string& var_name,
                       const DDim& ddim,
                       const T* data,
Z
zhupengyang 已提交
109 110
                       const LoD& lod = {},
                       bool is_persistable = false) {
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117
    auto* tensor = scope_->NewTensor(var_name);
    tensor->Resize(ddim);
    auto* d = tensor->mutable_data<T>();
    memcpy(d, data, ddim.production() * sizeof(T));

    // set lod
    if (!lod.empty()) *tensor->mutable_lod() = lod;
Z
zhupengyang 已提交
118 119
    // set persistable
    tensor->set_persistable(is_persistable);
Y
Yan Chunwei 已提交
120 121
  }

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  /// Prepare a tensor_array in host. The tensors will be created in scope_.
  /// Need to specify the targets other than X86 or ARM.
  template <typename T>
  void SetCommonTensorList(const std::string& var_name,
                           const std::vector<DDim>& array_tensor_dims,
                           const std::vector<std::vector<T>>& datas,
                           const std::vector<LoD>& lods = {}) {
    CHECK_EQ(array_tensor_dims.size(), datas.size());
    if (!lods.empty()) {
      CHECK_EQ(array_tensor_dims.size(), lods.size());
    }

    auto* tensor_array =
        scope_->Var(var_name)->GetMutable<std::vector<Tensor>>();
    for (int i = 0; i < array_tensor_dims.size(); i++) {
      Tensor tmp;
      tmp.Resize(array_tensor_dims[i]);
      auto* tmp_data = tmp.mutable_data<T>();
      memcpy(tmp_data,
             datas[i].data(),
             array_tensor_dims[i].production() * sizeof(T));
      if (!lods.empty()) {
        tmp.set_lod(lods[i]);
      }
      tensor_array->push_back(tmp);
    }
  }

Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  // Prepare for the operator.
  virtual void PrepareOpDesc(cpp::OpDesc* op_desc) = 0;

 public:
  const Instruction& instruction() { return *instruction_; }

 private:
  std::unique_ptr<KernelContext> ctx_;
  void CreateInstruction();

  void PrepareScopes() {
    inst_scope_ = &scope_->NewScope();
    base_scope_ = &scope_->NewScope();
  }

  // Check shape
  // TODO(Superjomn) Move this method to utils or DDim?
  bool ShapeEquals(const DDim& a, const DDim& b) {
    if (a.size() != b.size()) return false;
    for (int i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  /// Copy the input tensors to target devices needed by the instruction.
  void PrepareInputsForInstruction();

  // Create output tensors and variables.
  void PrepareOutputsForInstruction() {
    for (auto x : op_desc().output_vars()) {
      inst_scope_->NewTensor(x);
      base_scope_->NewTensor(x);
    }
  }

 private:
187
  Place place_;
Y
Yan Chunwei 已提交
188
  std::shared_ptr<Scope> scope_;
189
  std::string alias_;
Y
Yan Chunwei 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  // The workspace for the Instruction.
  Scope* inst_scope_{};
  // The workspace for the baseline implementation.
  Scope* base_scope_{};
  std::unique_ptr<cpp::OpDesc> op_desc_;
  std::unique_ptr<Instruction> instruction_;
};

class Arena {
 public:
  Arena(std::unique_ptr<TestCase>&& tester,
        const Place& place,
        float abs_error = 1e-5)
      : tester_(std::move(tester)), place_(place), abs_error_(abs_error) {
    tester_->Prepare();
  }

207
  bool TestPrecision(const std::vector<std::string>& exclude_outs = {}) {
Y
Yan Chunwei 已提交
208 209 210 211 212 213
    tester_->RunBaseline(tester_->baseline_scope());
    tester_->RunInstruction();

    bool success = true;
    for (auto& out : tester_->op_desc().OutputArgumentNames()) {
      for (auto& var : tester_->op_desc().Output(out)) {
214 215 216 217
        if (std::find(exclude_outs.begin(), exclude_outs.end(), var) !=
            exclude_outs.end()) {
          continue;
        }
Y
Yan Chunwei 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231
        success = success && CompareTensor(out, var);
      }
    }
    LOG(INFO) << "done";
    return success;
  }

  void TestPerformance(int times = 100) {
    auto timer = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < times; i++) {
      tester_->RunInstruction();
    }
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(
        std::chrono::high_resolution_clock::now() - timer);
232 233 234 235 236 237 238 239 240 241 242

    timer = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < times; i++) {
      tester_->RunBaseline(tester_->baseline_scope());
    }
    auto duration_basic = std::chrono::duration_cast<std::chrono::milliseconds>(
        std::chrono::high_resolution_clock::now() - timer);
    LOG(INFO) << "average lite duration: " << duration.count() << " ms";
    LOG(INFO) << "average basic duration: " << duration_basic.count() << " ms";
    LOG(INFO) << "speed up ratio: lite_speed / basic_speed: "
              << static_cast<float>(duration_basic.count()) / duration.count();
Y
Yan Chunwei 已提交
243 244 245 246 247 248 249 250
  }

 private:
  // input_name: X
  bool CompareTensor(const std::string& arg_name, const std::string& var_name) {
    // get tensor type.
    const Type* type =
        tester_->instruction().kernel()->GetOutputDeclType(arg_name);
J
juncaipeng 已提交
251
    auto precision_type = type->precision();
252
    return tester_->CheckPrecision(var_name, abs_error_, precision_type);
Y
Yan Chunwei 已提交
253 254 255 256 257
  }

 private:
  std::unique_ptr<TestCase> tester_;
  Place place_;
258
  float abs_error_;
Y
Yan Chunwei 已提交
259 260 261 262 263
};

}  // namespace arena
}  // namespace lite
}  // namespace paddle