test_gemm_int8_accuracy.cpp 8.2 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <climits>
Z
Zhen Wang 已提交
16 17 18 19 20 21 22 23
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <random>
#include "../test_helper.h"
#include "common/log.h"
#include "memory/t_malloc.h"
#include "operators/math/gemm.h"
Z
Zhen Wang 已提交
24 25 26
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
Z
Zhen Wang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
#define c(i, j) c[(i)*ldc + (j)]
#define c1(i, j) c1[(i)*ldc + (j)]

using std::default_random_engine;
using std::uniform_int_distribution;

void print_matirx(int m, int n, int ldc, int32_t *c) {
  for (int i = 0; i < m; ++i) {
    std::cout << c(i, 0);
    for (int j = 1; j < n; ++j) {
      std::cout << " | " << c(i, j);
    }
    std::cout << std::endl;
  }
  std::cout << std::endl;
}

void print_matirx(int m, int n, int ldc, int8_t *c) {
  for (int i = 0; i < m; ++i) {
    std::cout << static_cast<int32_t>(c(i, 0));
    for (int j = 1; j < n; ++j) {
      std::cout << " | " << static_cast<int32_t>(c(i, j));
    }
    std::cout << std::endl;
  }
  std::cout << std::endl;
}

58 59 60 61 62 63 64 65 66 67
int32_t qadd_int32(int32_t l, int32_t r) {
  int64_t res = static_cast<int64_t>(l) + static_cast<int64_t>(r);
  if (res > INT_MAX)
    return INT_MAX;
  else if (res < INT_MIN)
    return INT_MIN;
  else
    return static_cast<int32_t>(res);
}

68 69 70 71 72 73 74 75 76 77
// round to zero
float round2zero(float v) {
  float res;
  if (v > 0)
    res = std::floor(v);
  else if (v < 0)
    res = std::ceil(v);
  return res;
}

78 79
int8_t qscale_int32(int32_t v, float scale) {
  float res = static_cast<float>(v) * scale;
80
  res = round2zero(res);
81 82 83 84 85 86 87 88
  if (res > 127)
    return static_cast<int8_t>(127);
  else if (res < -127)
    return static_cast<int8_t>(-127);
  else
    return static_cast<int8_t>(res);
}

Z
Zhen Wang 已提交
89 90 91 92 93 94
int do_sgemm(int m, int n, int k, bool relu, int pr) {
  int lda = k;
  int ldb = n;
  int ldc = n;
  default_random_engine e;
  uniform_int_distribution<int8_t> pixel(-127, 127);
Z
Zhen Wang 已提交
95 96 97 98 99 100 101 102
  int8_t *a = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * m * k));
  int8_t *b = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * k * n));
  int32_t *c = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * m * n));
  int32_t *c1 = static_cast<int32_t *>(
      paddle_mobile::memory::Alloc(sizeof(int32_t) * m * n));
Z
Zhen Wang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

  for (int i = 0; i < m * k; ++i) {
    a[i] = pixel(e);
  }
  for (int i = 0; i < k * n; ++i) {
    b[i] = pixel(e);
  }

  for (int i = 0; i < m; ++i) {
    for (int j = 0; j < n; ++j) {
      int32_t r = 0;
      for (int p = 0; p < k; p++) {
        r += static_cast<int32_t>(a(i, p)) * static_cast<int32_t>(b(p, j));
      }
      c1(i, j) = r;
    }
  }

  paddle_mobile::operators::math::Gemm gemm;
Z
Zhen Wang 已提交
122 123 124 125
#ifdef _OPENMP
  gemm.Sgemm_omp(m, n, k, static_cast<int8_t>(1), a, lda, b, ldb,
                 static_cast<int8_t>(0), c, ldc, relu, nullptr);
#else
Z
Zhen Wang 已提交
126 127
  gemm.Sgemm(m, n, k, static_cast<int8_t>(1), a, lda, b, ldb,
             static_cast<int8_t>(0), c, ldc, relu, nullptr);
Z
Zhen Wang 已提交
128
#endif
Z
Zhen Wang 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  int eq = 0;
  int neq = 0;
  for (int i = 0; i < m * n; ++i) {
    if (c[i] == c1[i]) {
      ++eq;
    } else {
      ++neq;
    }
  }

  if (pr > 0) {
    std::cout << "A:" << std::endl;
    print_matirx(m, k, lda, a);
    std::cout << "B:" << std::endl;
    print_matirx(k, n, ldb, b);
    std::cout << "C:" << std::endl;
    print_matirx(m, n, ldc, c);
    std::cout << "C1:" << std::endl;
    print_matirx(m, n, ldc, c1);
  }

  std::cout << "mnk=" << m << " " << n << " " << k << " relu=" << relu
            << "   eq=" << eq << " neq=" << neq << std::endl;

  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  paddle_mobile::memory::Free(c1);

  return 0;
}

161 162 163 164
int do_sgemm_with_bias(int m, int n, int k, bool relu, int pr) {
  int lda = k;
  int ldb = n;
  int ldc = n;
165
  float scale = 0.00628f;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  default_random_engine e;
  uniform_int_distribution<int8_t> pixel(-127, 127);
  int8_t *a = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * m * k));
  int8_t *b = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * k * n));
  int8_t *c = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * m * n));
  int8_t *c1 = static_cast<int8_t *>(
      paddle_mobile::memory::Alloc(sizeof(int8_t) * m * n));

  int32_t *bias =
      static_cast<int32_t *>(paddle_mobile::memory::Alloc(sizeof(int32_t) * m));

  for (int i = 0; i < m * k; ++i) {
    a[i] = pixel(e);
  }
  for (int i = 0; i < k * n; ++i) {
    b[i] = pixel(e);
  }
  for (int i = 0; i < m; ++i) {
    bias[i] = static_cast<int32_t>(pixel(e));
  }
  for (int i = 0; i < m; ++i) {
    int32_t bias_v = bias[i];
    for (int j = 0; j < n; ++j) {
      int32_t r = 0;
      for (int p = 0; p < k; p++) {
        r += static_cast<int32_t>(a(i, p)) * static_cast<int32_t>(b(p, j));
      }
      r = qadd_int32(r, bias_v);
      if (relu) r = std::max(0, r);
      c1(i, j) = qscale_int32(r, scale);
    }
  }

  paddle_mobile::operators::math::Gemm gemm;
#ifdef _OPENMP
  // TODO(wzzju):gemm.Sgemm_omp_with_bias, now use single thread instead.
  gemm.Sgemm(m, n, k, scale, a, lda, b, ldb, static_cast<float>(0), c, ldc,
             relu, bias);
#else
  gemm.Sgemm(m, n, k, scale, a, lda, b, ldb, static_cast<float>(0), c, ldc,
             relu, bias);
#endif
  int eq = 0;
  int neq = 0;
  for (int i = 0; i < m * n; ++i) {
    if (c[i] == c1[i]) {
      ++eq;
    } else {
      ++neq;
    }
  }

  if (pr > 0) {
    std::cout << "A:" << std::endl;
    print_matirx(m, k, lda, a);
    std::cout << "B:" << std::endl;
    print_matirx(k, n, ldb, b);
    std::cout << "Bias:" << std::endl;
    print_matirx(m, 1, 1, bias);
    std::cout << "C:" << std::endl;
    print_matirx(m, n, ldc, c);
    std::cout << "C1:" << std::endl;
    print_matirx(m, n, ldc, c1);
  }

  std::cout << "mnk=" << m << " " << n << " " << k << " relu=" << relu
            << "   eq=" << eq << " neq=" << neq << std::endl;

  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  paddle_mobile::memory::Free(c1);
  paddle_mobile::memory::Free(bias);

  return 0;
}

Z
Zhen Wang 已提交
246
int main() {
Z
Zhen Wang 已提交
247
#ifdef _OPENMP
248
  omp_set_num_threads(4);
Z
Zhen Wang 已提交
249
#endif
250 251 252
  std::cout << "\n\n******************************************************\n\n"
            << std::endl;
  std::cout << "Test gemm without bias:" << std::endl;
Z
Zhen Wang 已提交
253
  do_sgemm(9, 9, 9, false, 1);
Z
Zhen Wang 已提交
254 255 256 257
  do_sgemm(10, 6, 12, false, 0);
  do_sgemm(512, 256, 384, false, 0);
  do_sgemm(1366, 768, 256, false, 0);
  do_sgemm(1255, 755, 333, false, 0);
Z
Zhen Wang 已提交
258 259 260
  do_sgemm(599, 1133, 393, false, 0);
  do_sgemm(777, 555, 999, false, 0);
  do_sgemm(333, 797, 939, false, 0);
Z
Zhen Wang 已提交
261
  do_sgemm(1024, 1024, 1024, false, 0);
Z
Zhen Wang 已提交
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  std::cout << "\n\n******************************************************\n\n"
            << std::endl;
  std::cout << "Test gemm with bias:" << std::endl;
  do_sgemm_with_bias(9, 9, 9, false, 1);
  do_sgemm_with_bias(10, 6, 12, false, 0);
  do_sgemm_with_bias(512, 256, 384, false, 0);
  do_sgemm_with_bias(1366, 768, 256, false, 0);
  do_sgemm_with_bias(1255, 755, 333, false, 0);
  do_sgemm_with_bias(599, 1133, 393, false, 0);
  do_sgemm_with_bias(777, 555, 999, false, 0);
  do_sgemm_with_bias(333, 797, 939, false, 0);
  do_sgemm_with_bias(1024, 1024, 1024, false, 0);

  std::cout << "\n\n******************************************************\n\n"
            << std::endl;
  std::cout << "Test gemm with relu and bias:" << std::endl;
  do_sgemm_with_bias(9, 9, 9, true, 1);
  do_sgemm_with_bias(10, 6, 12, true, 0);
  do_sgemm_with_bias(512, 256, 384, true, 0);
  do_sgemm_with_bias(1366, 768, 256, true, 0);
  do_sgemm_with_bias(1255, 755, 333, true, 0);
  do_sgemm_with_bias(599, 1133, 393, true, 0);
  do_sgemm_with_bias(777, 555, 999, true, 0);
  do_sgemm_with_bias(333, 797, 939, true, 0);
  do_sgemm_with_bias(1024, 1024, 1024, true, 0);

Z
Zhen Wang 已提交
289 290
  return 0;
}