psroi_pool_kernel.cpp 8.2 KB
Newer Older
Z
zhangyang0701 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PSROI_POOL_OP

17
#include <cmath>
Z
zhangyang0701 已提交
18 19 20
#include <vector>
#include "operators/kernel/detection_kernel.h"

J
jameswu2014 已提交
21 22
#include "fpga/V1/api.h"
#include "fpga/V1/image.h"
Z
zhangyang0701 已提交
23 24 25 26
namespace paddle_mobile {
namespace operators {

template <>
27 28 29 30 31 32 33
bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
  auto dims = param->input_x_->dims();
  PADDLE_MOBILE_ENFORCE(dims[1] * dims[3] % IMAGE_ALIGNMENT == 0,
                        "data not aligned");

  param->float_input = std::make_shared<Tensor>();
  param->float_input->mutable_data<float>(param->input_x_->dims());
J
jameswu2014 已提交
34
  // param->float_output = std::make_shared<Tensor>();
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

  auto input = param->input_x_;
  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_HWC;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_input->mutable_data<float>();
  args.output.scale_address = param->float_input->scale;
  param->input_arg = args;

J
jameswu2014 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  auto* rois = param->input_rois_;
  int rois_num = rois->dims()[0];
  framework::DDim dims_out_new = framework::make_ddim(
      {rois_num, param->output_->dims()[1], param->output_->dims()[2],
       param->output_->dims()[3]});
  param->output_->Resize(dims_out_new);
  // fpga::format_fp16_ofm(param->output_);

  param->output_->mutable_data<float>(dims_out_new);
  //  auto output = param->float_output.get();
  // param->output_ = output;
  /* args.input_data_type = fpga::DATA_TYPE_FP32;
   args.output_data_type = fpga::DATA_TYPE_FP16;
   args.image.address = output->data<float>();
   args.image.height = (uint32_t)output->dims()[2];
   args.image.width = (uint32_t)output->dims()[3];
   args.image.channels = (uint32_t)output->dims()[1]  ;
   args.output.address = param->output_->mutable_data<half>();
   args.output.scale_address = param->output_->scale;
   param->output_arg = args;*/
70

Z
zhangyang0701 已提交
71 72 73
  return true;
}

J
jameswu2014 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename Dtype>
void PSROIPooling(const Dtype* bottom_data, const Dtype spatial_scale,
                  const int channels, const int height, const int width,
                  const int pooled_height, const int pooled_width,
                  const Dtype* bottom_rois, const int output_dim,
                  const int group_size, Dtype* top_data,
                  // int* mapping_channel,
                  int index, int* rois_batch_id) {
  // The output is in order (n, ctop, ph, pw)
  // static int cnt = 0;
  int pw = index % pooled_width;
  int ph = (index / pooled_width) % pooled_height;
  int ctop = (index / pooled_width / pooled_height) % output_dim;
  int n = index / pooled_width / pooled_height / output_dim;

  // [start, end) interval for spatial sampling
  bottom_rois += n * 4;
  int roi_batch_ind = rois_batch_id[n];  // bottom_rois[0];
  Dtype roi_start_w = static_cast<Dtype>(round(bottom_rois[0])) * spatial_scale;
  Dtype roi_start_h = static_cast<Dtype>(round(bottom_rois[1])) * spatial_scale;
  Dtype roi_end_w =
      static_cast<Dtype>(round(bottom_rois[2]) + 1.) * spatial_scale;
  Dtype roi_end_h =
      static_cast<Dtype>(round(bottom_rois[3]) + 1.) * spatial_scale;

  // Force too small ROIs to be 1x1
  Dtype roi_width = std::max(roi_end_w - roi_start_w, 0.1f);  // avoid 0
  Dtype roi_height = std::max(roi_end_h - roi_start_h, 0.1f);

  // Compute w and h at bottom
  Dtype bin_size_h = roi_height / static_cast<Dtype>(pooled_height);
  Dtype bin_size_w = roi_width / static_cast<Dtype>(pooled_width);

  int hstart = floor(static_cast<Dtype>(ph) * bin_size_h + roi_start_h);
  int wstart = floor(static_cast<Dtype>(pw) * bin_size_w + roi_start_w);
  int hend = ceil(static_cast<Dtype>(ph + 1) * bin_size_h + roi_start_h);
  int wend = ceil(static_cast<Dtype>(pw + 1) * bin_size_w + roi_start_w);
  // Add roi offsets and clip to input boundaries
  hstart = std::min(std::max(hstart, 0), height);
  hend = std::min(std::max(hend, 0), height);
  wstart = std::min(std::max(wstart, 0), width);
  wend = std::min(std::max(wend, 0), width);
  bool is_empty = (hend <= hstart) || (wend <= wstart);

  int gw = pw;
  int gh = ph;
  int c = (ctop * group_size + gh) * group_size + gw;

  bottom_data += (roi_batch_ind * channels + c) * height * width;
  Dtype out_sum = 0;
  for (int h = hstart; h < hend; ++h) {
    for (int w = wstart; w < wend; ++w) {
      int bottom_index = h * width + w;
      out_sum += bottom_data[bottom_index];
    }
  }

  Dtype bin_area = (hend - hstart) * (wend - wstart);
  top_data[index] = is_empty ? 0. : out_sum / bin_area;
}
Z
zhangyang0701 已提交
134
template <>
135 136 137 138 139 140 141 142
void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
  auto input_tensor = param.float_input.get();
  fpga::PerformBypass(param.input_arg);
  fpga::fpga_invalidate(input_tensor->data<float>(),
                        input_tensor->numel() * sizeof(float));

  auto* in = input_tensor;
  auto* rois = param.input_rois_;
J
jameswu2014 已提交
143
  auto* out = param.output_;  // param.float_output.get();
144 145 146 147 148 149 150 151 152 153 154 155 156

  auto pooled_height = param.pooled_height_;
  auto pooled_width = param.pooled_width_;
  auto spatial_scale = param.spatial_scale_;
  auto output_channels = param.output_channels_;

  auto in_dims = in->dims();
  int batch_size = in_dims[0];
  int input_channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];
  int rois_num = rois->dims()[0];

J
jameswu2014 已提交
157 158 159 160 161 162
  auto data_nhwc = in->mutable_data<float>();
  fpga::image::convert_to_chw(&data_nhwc, input_channels, height, width);
  framework::DDim dims_out_new = framework::make_ddim(
      {rois_num, (param.output_)->dims()[1], (((param.output_)->dims()[2])),
       (param.output_)->dims()[3]});
  (param.output_)->Resize(dims_out_new);
163

J
jameswu2014 已提交
164
  const float* input_data = data_nhwc;  // in->data<float>();
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  framework::Tensor rois_batch_id_list;
  rois_batch_id_list.Resize({rois_num});
  auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>();

  PADDLE_MOBILE_ENFORCE(rois->NumLevels() > 0, "ROIS should not be empty");

  auto rois_lod = rois->lod().back();
  int rois_batch_size = rois_lod.size() - 1;
  PADDLE_MOBILE_ENFORCE(
      rois_batch_size == batch_size,
      "the rois_batch_size and input(X) batch_size should be the same.");
  int rois_num_with_lod = rois_lod[rois_batch_size];
  PADDLE_MOBILE_ENFORCE(rois_num_with_lod == rois_num,
                        "the rois_num from input and lod must be the same");

  PADDLE_MOBILE_ENFORCE(
      input_channels == output_channels * pooled_height * pooled_width,
      "the channels of input X should equal the product of "
      "output_channels x pooled_height x pooled_width");

  // calculate batch id index for each roi according to LoD
  for (int n = 0; n < rois_batch_size; ++n) {
    for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
      rois_batch_id_data[i] = n;
    }
  }
  auto output_data = out->mutable_data<float>();
  auto input_rois = rois->data<float>();

  // calculate psroipooling, parallel processing can be implemented per ROI
J
jameswu2014 已提交
195 196 197 198 199 200 201

  int index = pooled_height * pooled_width * output_channels * rois_num;
  for (int idx = 0; idx < index; idx++) {
    PSROIPooling<float>(input_data, spatial_scale, input_channels, height,
                        width, pooled_height, pooled_width, input_rois,
                        output_channels, pooled_height, output_data, idx,
                        rois_batch_id_data);
202
  }
J
jameswu2014 已提交
203 204 205 206
  //
  fpga::image::convert_to_hwc(&output_data, output_channels, pooled_height,
                              pooled_width, rois_num);
  out->reset_data_ptr(output_data);
Z
zhangyang0701 已提交
207 208 209 210 211 212
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // PSROI_POOL_OP