psroi_pool_kernel.cpp 8.0 KB
Newer Older
Z
zhangyang0701 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PSROI_POOL_OP

17
#include <cmath>
Z
zhangyang0701 已提交
18 19 20 21 22 23 24
#include <vector>
#include "operators/kernel/detection_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
bool PSRoiPoolKernel<FPGA, float>::Init(PSRoiPoolParam<FPGA>* param) {
  auto dims = param->input_x_->dims();
  PADDLE_MOBILE_ENFORCE(dims[1] * dims[3] % IMAGE_ALIGNMENT == 0,
                        "data not aligned");

  param->float_input = std::make_shared<Tensor>();
  param->float_input->mutable_data<float>(param->input_x_->dims());
  param->float_output = std::make_shared<Tensor>();
  param->float_output->mutable_data<float>(param->output_->dims());

  auto input = param->input_x_;
  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_HWC;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input->data<half>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->float_input->mutable_data<float>();
  args.output.scale_address = param->float_input->scale;
  param->input_arg = args;

  fpga::format_fp16_ofm(param->output_);

  input = param->float_output.get();
  args.input_data_type = fpga::DATA_TYPE_FP32;
  args.output_data_type = fpga::DATA_TYPE_FP16;
  args.image.address = input->data<float>();
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = param->output_->mutable_data<half>();
  args.output.scale_address = param->output_->scale;
  param->input_arg = args;

Z
zhangyang0701 已提交
62 63 64 65
  return true;
}

template <>
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
void PSRoiPoolKernel<FPGA, float>::Compute(const PSRoiPoolParam<FPGA>& param) {
  auto input_tensor = param.float_input.get();
  fpga::PerformBypass(param.input_arg);
  fpga::fpga_invalidate(input_tensor->data<float>(),
                        input_tensor->numel() * sizeof(float));

  auto* in = input_tensor;
  auto* rois = param.input_rois_;
  auto* out = param.float_output.get();

  auto pooled_height = param.pooled_height_;
  auto pooled_width = param.pooled_width_;
  auto spatial_scale = param.spatial_scale_;
  auto output_channels = param.output_channels_;

  auto in_dims = in->dims();
  int batch_size = in_dims[0];
  int input_channels = in_dims[1];
  int height = in_dims[2];
  int width = in_dims[3];
  int rois_num = rois->dims()[0];

  // TODO   auto in_stride = framework::stride(in_dims);
  // TODO   auto out_stride = framework::stride(out->dims());
  auto in_stride =
      framework::stride({batch_size, height, width, input_channels});
  auto out_stride = framework::stride(
      {out->dims()[0], out->dims()[2], out->dims()[3], out->dims()[1]});

  const float* input_data = in->data<float>();
  framework::Tensor rois_batch_id_list;
  rois_batch_id_list.Resize({rois_num});
  auto rois_batch_id_data = rois_batch_id_list.mutable_data<int>();
  return;

  PADDLE_MOBILE_ENFORCE(rois->NumLevels() > 0, "ROIS should not be empty");

  auto rois_lod = rois->lod().back();
  int rois_batch_size = rois_lod.size() - 1;
  PADDLE_MOBILE_ENFORCE(
      rois_batch_size == batch_size,
      "the rois_batch_size and input(X) batch_size should be the same.");
  int rois_num_with_lod = rois_lod[rois_batch_size];
  PADDLE_MOBILE_ENFORCE(rois_num_with_lod == rois_num,
                        "the rois_num from input and lod must be the same");

  PADDLE_MOBILE_ENFORCE(
      input_channels == output_channels * pooled_height * pooled_width,
      "the channels of input X should equal the product of "
      "output_channels x pooled_height x pooled_width");

  // calculate batch id index for each roi according to LoD
  for (int n = 0; n < rois_batch_size; ++n) {
    for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
      rois_batch_id_data[i] = n;
    }
  }
  auto output_data = out->mutable_data<float>();
  auto input_rois = rois->data<float>();

  // calculate psroipooling, parallel processing can be implemented per ROI
  for (int n = 0; n < rois_num; ++n) {
    // set roi batch id
    int roi_batch_id = rois_batch_id_data[n];

    // [start, end) interval for spatial sampling
    auto offset_input_rois = input_rois + n * 4;
    auto roi_start_w =
        static_cast<float>(round(offset_input_rois[0])) * spatial_scale;
    auto roi_start_h =
        static_cast<float>(round(offset_input_rois[1])) * spatial_scale;
    auto roi_end_w =
        static_cast<float>(round(offset_input_rois[2]) + 1.) * spatial_scale;
    auto roi_end_h =
        static_cast<float>(round(offset_input_rois[3]) + 1.) * spatial_scale;

    // Force too small rois to be 1 x 1
    auto roi_height = std::max(roi_end_h - roi_start_h, 0.1f);  // avoid 0
    auto roi_width = std::max(roi_end_w - roi_start_w, 0.1f);

    // Compute bin size w and h at input feature map
    auto bin_size_h = roi_height / static_cast<float>(pooled_height);
    auto bin_size_w = roi_width / static_cast<float>(pooled_width);
    DLOG << 3;

    // calculate each pixel of the output feature map.
    int out_roi_offset = n * out_stride[0];
    for (int c = 0; c < output_channels; ++c) {
      // per category
      // int out_plane_offset = out_roi_offset + c * out_stride[1];
      int out_plane_offset = out_roi_offset + c;
      for (int ph = 0; ph < pooled_height; ++ph) {
        // TODO         int out_row_offset = out_plane_offset + ph *
        // out_stride[2];
        int out_row_offset = out_plane_offset + ph * out_stride[1];
        for (int pw = 0; pw < pooled_width; ++pw) {
          // calculate w and h at input feature map
          int hstart = floor(static_cast<float>(ph) * bin_size_h + roi_start_h);
          int wstart = floor(static_cast<float>(pw) * bin_size_w + roi_start_w);
          int hend =
              ceil(static_cast<float>(ph + 1) * bin_size_h + roi_start_h);
          int wend =
              ceil(static_cast<float>(pw + 1) * bin_size_w + roi_start_w);
          //  Add roi offsets and clip to input boundaries
          hstart = std::min(std::max(hstart, 0), height);
          wstart = std::min(std::max(wstart, 0), width);
          hend = std::min(std::max(hend, 0), height);
          wend = std::min(std::max(wend, 0), width);

          // TODO           int output_index = out_row_offset + pw;
          int output_index = out_row_offset + pw * output_channels;
          int input_channel = (c * pooled_height + ph) * pooled_width + pw;
          // TODO          int input_plane_offset =
          // TODO           roi_batch_id * in_stride[0] + input_channel *
          // in_stride[1];
          int input_plane_offset = roi_batch_id * in_stride[0] + input_channel;
          auto offset_input_data = input_data + input_plane_offset;
          float out_sum = 0.;
          bool is_empty = (hend <= hstart) || (wend <= wstart);
          for (int ih = hstart; ih < hend; ++ih) {
            for (int iw = wstart; iw < wend; ++iw) {
              int input_index = ih * in_stride[1] + iw * input_channel;
              out_sum += offset_input_data[input_index];
            }
          }
          float bin_area = (hend - hstart) * (wend - wstart);
          output_data[output_index] = is_empty ? 0. : out_sum / bin_area;
        }
      }
    }
  }
  fpga::format_image(out);
  fpga::PerformBypass(param.output_arg);
Z
zhangyang0701 已提交
199 200 201 202 203 204
}

}  // namespace operators
}  // namespace paddle_mobile

#endif  // PSROI_POOL_OP