im2col.cpp 25.2 KB
Newer Older
Z
zhaojiaying01 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
朔-望's avatar
朔-望 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhaojiaying01 已提交
15
#include "operators/math/im2col.h"
Z
zhaojiaying01 已提交
16
#include <vector>
E
eclipsess 已提交
17
#ifdef __ARM_NEON
L
liuruilong 已提交
18
#include <arm_neon.h>
E
eclipsess 已提交
19
#endif
朔-望's avatar
朔-望 已提交
20 21
#include "common/types.h"
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
22 23
namespace operators {
namespace math {
朔-望's avatar
朔-望 已提交
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
void ExtractToImg(const float *im_data, float *col_data, const int im_height,
                  const int im_width, const int col_height, const int col_width,
                  const int padding_h, const int padding_w, const int stride_h,
                  const int stride_w, const int kh, const int kw) {
  int h = padding_h - kh;
  int w = padding_w - kw;
  int col_start_height = h > 0 ? (h + stride_h - 1) / stride_h : 0;
  int col_start_width = w > 0 ? (w + stride_w - 1) / stride_w : 0;
  int start_height = kh + col_start_height * stride_h - padding_h;
  int start_width = kw + col_start_width * stride_w - padding_w;

  int end_height = (col_height - col_start_height) * stride_h + start_height;
  end_height = end_height > im_height ? im_height : end_height;
  int end_width = (col_width - col_start_width) * stride_w + start_width;
  end_width = end_width > im_width ? im_width : end_width;
  int extract = (end_width - start_width + stride_w - 1) / stride_w;

  im_data += start_height * im_width + start_width;
  col_data += col_start_height * col_width + col_start_width;
  #pragma omp parallel for
  for (int i = start_height; i < end_height; i += stride_h) {
    const float *local_im_data = im_data + i * im_width * stride_h;
    float *local_col_data = col_data + col_width;
    if (stride_w == 1) {
      memcpy(local_col_data, local_im_data, extract * sizeof(float));
    } else if (stride_w == 2) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        float32x4x2_t img = vld2q_f32(local_im_data + s * 2);
        vst1q_f32(local_col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        local_col_data[s] = local_im_data[s * 2];
      }
    } else if (stride_w == 3) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        float32x4x3_t img = vld3q_f32(local_im_data + s * 3);
        vst1q_f32(local_col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        local_col_data[s] = local_im_data[s * 3];
      }
    } else if (stride_w == 4) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        float32x4x4_t img = vld4q_f32(local_im_data + s * 4);
        vst1q_f32(local_col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        local_col_data[s] = local_im_data[s * 4];
      }
    } else {
      PADDLE_MOBILE_THROW_EXCEPTION("stride_w must be one of 1, 2, 3 and 4.");
    }
  }
}

朔-望's avatar
朔-望 已提交
89 90 91 92 93 94
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height,
 * output_width]
 */
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <>
void Im2ColFunctor<ColFormat::kCFO, CPU, float>::operator()(
    const framework::Tensor &im, const std::vector<int> &dilation,
    const std::vector<int> &stride, const std::vector<int> &padding,
    framework::Tensor *col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int col_height = col->dims()[3];
  int col_width = col->dims()[4];

  int channels_col = im_channels * filter_height * filter_width;
  const float *im_data = im.data<float>();
  float *col_data = col->data<float>();
#if __ARM_NEON
  const int osize = col_height;
  const int isize = im_height;
  bool pad1 = padding[0] > 0;
  bool pad2 =
      (pad1 && padding[1] &&
       (((isize - 2 * padding[0] + filter_height) % stride[0] == 0) ? 1 : 0));
  int fill = isize % 2;
  if (stride[0] == 1 && filter_height == 3 && pad1 && pad2 &&
      dilation[0] == 1 && im_height > 2) {
    for (int c = 0; c < im_channels; ++c) {
      int oosize = osize * osize;
      int nk4 = osize / 4;
      int mk4 = osize % 4;

      float *col0 = col_data + 0 * oosize + 2 * osize + 2;
      float *col1 = col_data + 1 * oosize + 2 * osize + 1;
      float *col2 = col_data + 2 * oosize + 2 * osize;

      float *col3 = col_data + 3 * oosize + osize + 2;
      float *col4 = col_data + 4 * oosize + osize + 1;
      float *col5 = col_data + 5 * oosize + osize;

      float *col6 = col_data + 6 * oosize + 2;
      float *col7 = col_data + 7 * oosize + 1;
      float *col8 = col_data + 8 * oosize;

      float32x4_t im1;
      const float *im_tmp_data = im_data + osize + 1;

      int rrsize = oosize - osize - 1;
      int nr4 = rrsize / 4;
      int mr4 = rrsize % 4;
      for (int i = 0; i < nr4; ++i) {
        im1 = vld1q_f32(im_tmp_data);
        vst1q_f32(col0, im1);
        vst1q_f32(col1, im1);
        vst1q_f32(col2, im1);
        vst1q_f32(col3, im1);
        vst1q_f32(col4, im1);
        vst1q_f32(col5, im1);
        vst1q_f32(col6, im1);
        vst1q_f32(col7, im1);
        vst1q_f32(col8, im1);

        col0 += 4;
        col1 += 4;
        col2 += 4;
        col3 += 4;
        col4 += 4;
        col5 += 4;
        col6 += 4;
        col7 += 4;
        col8 += 4;

        im_tmp_data += 4;
      }
      for (int i = 0; i < mr4; ++i) {
        *col0 = *im_tmp_data;
        *col1 = *im_tmp_data;
        *col2 = *im_tmp_data;
        *col3 = *im_tmp_data;
        *col4 = *im_tmp_data;
        *col5 = *im_tmp_data;
        *col6 = *im_tmp_data;
        *col7 = *im_tmp_data;
        *col8 = *im_tmp_data;

        col0++;
        col1++;
        col2++;
        col3++;
        col4++;
        col5++;
        col6++;
        col7++;
        col8++;

        im_tmp_data++;
      }
朔-望's avatar
朔-望 已提交
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
      im_tmp_data = im_data + 1;
      col0 = col_data + 0 * oosize + osize + 2;
      col1 = col_data + 1 * oosize + osize + 1;
      col2 = col_data + 2 * oosize + osize;

      col3 = col_data + 3 * oosize + 2;
      col4 = col_data + 4 * oosize + 1;
      col5 = col_data + 5 * oosize;

      for (int i = 0; i < nk4; i++) {
        im1 = vld1q_f32(im_tmp_data);
        vst1q_f32(col0, im1);
        vst1q_f32(col1, im1);
        vst1q_f32(col2, im1);
        vst1q_f32(col3, im1);
        vst1q_f32(col4, im1);
        vst1q_f32(col5, im1);

        col0 += 4;
        col1 += 4;
        col2 += 4;
        col3 += 4;
        col4 += 4;
        col5 += 4;
        im_tmp_data += 4;
      }
朔-望's avatar
朔-望 已提交
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
      for (int i = 0; i < mk4; i++) {
        *col0 = *im_tmp_data;
        *col1 = *im_tmp_data;
        *col2 = *im_tmp_data;
        *col3 = *im_tmp_data;
        *col4 = *im_tmp_data;
        *col5 = *im_tmp_data;
        col0++;
        col1++;
        col2++;
        col3++;
        col4++;
        col5++;

        im_tmp_data++;
      }

      // fill 0 1 11;
      for (int i = 0; i < osize; ++i) {
        col_data[0 * oosize + i * osize] = 0.0;
        col_data[3 * oosize + i * osize] = 0.0;
        col_data[6 * oosize + i * osize] = 0.0;

        col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
        col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
        col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
      }

      col_data[0 * oosize + osize + 1] = im_data[0];
      col_data[3 * oosize + 1] = im_data[0];
      col_data[6 * oosize + 1] = im_data[osize];

      col_data[1 * oosize + osize] = im_data[0];
      col_data[4 * oosize] = im_data[0];
      col_data[7 * oosize] = im_data[osize];

      float32x4_t zero4;
      zero4 = vdupq_n_f32(0.0);
      auto col_z0 = col_data;
      auto col_z1 = col_data + oosize;
      auto col_z2 = col_data + 2 * oosize;
      auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
      auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
      auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);

      for (int i = 0; i < nk4; ++i) {
        vst1q_f32(col_z0, zero4);
        vst1q_f32(col_z1, zero4);
        vst1q_f32(col_z2, zero4);
        vst1q_f32(col_z6, zero4);
        vst1q_f32(col_z7, zero4);
        vst1q_f32(col_z8, zero4);

        col_z0 += 4;
        col_z1 += 4;
        col_z2 += 4;
        col_z6 += 4;
        col_z7 += 4;
        col_z8 += 4;
      }

      for (int i = 0; i < mk4; ++i) {
        col_z0[i] = 0.0;
        col_z1[i] = 0.0;
        col_z2[i] = 0.0;
        col_z6[i] = 0.0;
        col_z7[i] = 0.0;
        col_z8[i] = 0.0;
      }
      col_data += 9 * oosize;
      im_data += isize * isize;
    }
  } else if (stride[0] == 2 && filter_height == 3 && pad1 && dilation[0] == 1 &&
             im_height > 2) {
    for (int c = 0; c < im_channels; ++c) {
      int oosize = osize * osize;
      int nk4 = osize / 4;
      int mk4 = osize % 4;

      // 3 2 3 1 0 1 3 2 3
      float *col0 = col_data + 0 * oosize + osize + 1;
      float *col1 = col_data + 1 * oosize + osize;
      float *col2 = col_data + 2 * oosize + osize;

      float *col3 = col_data + 3 * oosize + 1;
      float *col4 = col_data + 4 * oosize;
      float *col5 = col_data + 5 * oosize;

      float *col6 = col_data + 6 * oosize + 1;
      float *col7 = col_data + 7 * oosize;
      float *col8 = col_data + 8 * oosize;

      float32x4x2_t im01;
      float32x4x2_t im23;
      const float *im_tmp_data0 = im_data;
      const float *im_tmp_data2 = im_data + isize;

      for (int j = 0; j < osize; ++j) {
        for (int i = 0; i < nk4; ++i) {
          im01 = vld2q_f32(im_tmp_data0);
          im23 = vld2q_f32(im_tmp_data2);
          vst1q_f32(col0, im23.val[1]);
          vst1q_f32(col1, im23.val[0]);
          vst1q_f32(col2, im23.val[1]);
          vst1q_f32(col3, im01.val[1]);
          vst1q_f32(col4, im01.val[0]);
          vst1q_f32(col5, im01.val[1]);
          vst1q_f32(col6, im23.val[1]);
          vst1q_f32(col7, im23.val[0]);
          vst1q_f32(col8, im23.val[1]);
E
eclipsess 已提交
329 330 331 332 333 334 335 336 337 338 339

          col0 += 4;
          col1 += 4;
          col2 += 4;
          col3 += 4;
          col4 += 4;
          col5 += 4;
          col6 += 4;
          col7 += 4;
          col8 += 4;

340 341
          im_tmp_data0 += 8;
          im_tmp_data2 += 8;
E
eclipsess 已提交
342
        }
343 344 345 346 347 348 349 350 351 352 353 354
        const float *im_tmp_data1 = im_tmp_data0 + 1;
        const float *im_tmp_data3 = im_tmp_data2 + 1;
        for (int i = 0; i < mk4; ++i) {
          *col0 = *im_tmp_data3;
          *col1 = *im_tmp_data2;
          *col2 = *im_tmp_data3;
          *col3 = *im_tmp_data1;
          *col4 = *im_tmp_data0;
          *col5 = *im_tmp_data1;
          *col6 = *im_tmp_data3;
          *col7 = *im_tmp_data2;
          *col8 = *im_tmp_data3;
E
eclipsess 已提交
355 356 357 358 359 360 361 362 363 364

          col0++;
          col1++;
          col2++;
          col3++;
          col4++;
          col5++;
          col6++;
          col7++;
          col8++;
365 366 367 368
          im_tmp_data0 += 2;
          im_tmp_data1 += 2;
          im_tmp_data2 += 2;
          im_tmp_data3 += 2;
E
eclipsess 已提交
369
        }
370 371 372 373 374 375 376 377
        im_tmp_data0 += (isize - fill);
        im_tmp_data2 += (isize - fill);
      }
      for (int i = 0; i < osize; ++i) {
        col_data[0 * oosize + i * osize] = 0.0;
        col_data[3 * oosize + i * osize] = 0.0;
        col_data[6 * oosize + i * osize] = 0.0;
        if (pad2) {
E
eclipsess 已提交
378 379 380 381
          col_data[2 * oosize + osize - 1 + i * osize] = 0.0;
          col_data[5 * oosize + osize - 1 + i * osize] = 0.0;
          col_data[8 * oosize + osize - 1 + i * osize] = 0.0;
        }
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      }
      float32x4_t zero4;
      zero4 = vdupq_n_f32(0.0);
      auto col_z0 = col_data;
      auto col_z1 = col_data + oosize;
      auto col_z2 = col_data + 2 * oosize;
      auto col_z6 = col_data + 6 * oosize + osize * (osize - 1);
      auto col_z7 = col_data + 7 * oosize + osize * (osize - 1);
      auto col_z8 = col_data + 8 * oosize + osize * (osize - 1);

      for (int i = 0; i < nk4; ++i) {
        vst1q_f32(col_z0, zero4);
        vst1q_f32(col_z1, zero4);
        vst1q_f32(col_z2, zero4);
        if (pad2) {
E
eclipsess 已提交
397 398 399 400
          vst1q_f32(col_z6, zero4);
          vst1q_f32(col_z7, zero4);
          vst1q_f32(col_z8, zero4);
        }
401 402 403 404 405 406 407
        col_z0 += 4;
        col_z1 += 4;
        col_z2 += 4;
        col_z6 += 4;
        col_z7 += 4;
        col_z8 += 4;
      }
E
eclipsess 已提交
408

409 410 411 412 413
      for (int i = 0; i < mk4; ++i) {
        col_z0[i] = 0.0;
        col_z1[i] = 0.0;
        col_z2[i] = 0.0;
        if (pad2) {
E
eclipsess 已提交
414 415 416 417 418 419
          col_z6[i] = 0.0;
          col_z7[i] = 0.0;
          col_z8[i] = 0.0;
        }
      }

420 421 422
      col_data[1 * oosize + osize] = im_data[isize];
      for (int i = 1; i < osize; ++i) {
        col_data[3 * oosize + i] = im_data[(i - 1) * stride[0] + 1];
423
      }
424 425 426 427 428
      col_data[4 * oosize] = im_data[0];
      col_data[7 * oosize] = im_data[isize];

      col_data += 9 * oosize;
      im_data += isize * isize;
朔-望's avatar
朔-望 已提交
429
    }
430 431 432 433 434 435 436 437 438 439 440 441 442 443
  } else if (stride[0] <= 4 && dilation[0] == 1 && dilation[0] == dilation[1]) {
    // pad 0
    memset(col_data, 0, col->numel() * sizeof(float));
    for (int ic = 0; ic < im_channels; ++ic) {
      for (int kh = 0; kh < filter_height; ++kh) {
        for (int kw = 0; kw < filter_width; ++kw) {
          ExtractToImg(im_data, col_data, im_height, im_width, col_height,
                       col_width, padding[0], padding[1], stride[0], stride[1],
                       kh, kw);
          col_data += col_height * col_width;
        }
      }
      im_data += im_height * im_width;
    }
444
  } else {
445
#endif
E
eclipsess 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
      for (int h = 0; h < col_height; ++h) {
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
        for (int w = 0; w < col_width; ++w) {
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
          int col_idx = (c * col_height + h) * col_width + w;
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;

          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
459
                                  ? static_cast<float>(0)
E
eclipsess 已提交
460 461 462 463
                                  : im_data[im_idx];
        }
      }
    }
464
#if __ARM_NEON
465
  }
E
eclipsess 已提交
466
#endif
467 468
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
void ExtractToImg(const int8_t *im_data, int8_t *col_data, const int im_height,
                  const int im_width, const int col_height, const int col_width,
                  const int padding_h, const int padding_w, const int stride_h,
                  const int stride_w, const int kh, const int kw) {
  int h = padding_h - kh;
  int w = padding_w - kw;
  int col_start_height = h > 0 ? (h + stride_h - 1) / stride_h : 0;
  int col_start_width = w > 0 ? (w + stride_w - 1) / stride_w : 0;
  int start_height = kh + col_start_height * stride_h - padding_h;
  int start_width = kw + col_start_width * stride_w - padding_w;

  int end_height = (col_height - col_start_height) * stride_h + start_height;
  end_height = end_height > im_height ? im_height : end_height;
  int end_width = (col_width - col_start_width) * stride_w + start_width;
  end_width = end_width > im_width ? im_width : end_width;
  int extract = (end_width - start_width + stride_w - 1) / stride_w;

  im_data += start_height * im_width + start_width;
  col_data += col_start_height * col_width + col_start_width;
  for (int i = start_height; i < end_height; i += stride_h) {
    if (stride_w == 1) {
      memcpy(col_data, im_data, extract * sizeof(int8_t));
    } else if (stride_w == 2) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        int8x16x2_t img = vld2q_s8(im_data + s * 2);
        vst1q_s8(col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        col_data[s] = im_data[s * 2];
      }
    } else if (stride_w == 3) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        int8x16x3_t img = vld3q_s8(im_data + s * 3);
        vst1q_s8(col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        col_data[s] = im_data[s * 3];
      }
    } else if (stride_w == 4) {
      int s = 0;
#if __ARM_NEON
      for (; s < extract - 15; s += 16) {
        int8x16x4_t img = vld4q_s8(im_data + s * 4);
        vst1q_s8(col_data + s, img.val[0]);
      }
#endif
      for (; s < extract; ++s) {
        col_data[s] = im_data[s * 4];
      }
    } else {
      PADDLE_MOBILE_THROW_EXCEPTION("stride_w must be one of 1, 2, 3 and 4.");
    }
    im_data += im_width * stride_h;
    col_data += col_width;
  }
}
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height,
 * output_width]
 */
template <>
void Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>::operator()(
    const framework::Tensor &im, const std::vector<int> &dilation,
    const std::vector<int> &stride, const std::vector<int> &padding,
    framework::Tensor *col) {
  int im_channels = im.dims()[0];
  int im_height = im.dims()[1];
  int im_width = im.dims()[2];
  int filter_height = col->dims()[1];
  int filter_width = col->dims()[2];
  int col_height = col->dims()[3];
  int col_width = col->dims()[4];

  int channels_col = im_channels * filter_height * filter_width;
  const int8_t *im_data = im.data<int8_t>();
553
  int8_t *col_data = col->mutable_data<int8_t>();
554 555
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  if (stride[0] <= 4 && dilation[0] == 1 && dilation[0] == dilation[1]) {
556 557 558
    // pad 0
    memset(col_data, 0, col->numel() * sizeof(int8_t));
    for (int ic = 0; ic < im_channels; ++ic) {
559 560 561 562 563 564
      for (int kh = 0; kh < filter_height; ++kh) {
        for (int kw = 0; kw < filter_width; ++kw) {
          ExtractToImg(im_data, col_data, im_height, im_width, col_height,
                       col_width, padding[0], padding[1], stride[0], stride[1],
                       kh, kw);
          col_data += col_height * col_width;
565 566
        }
      }
567
      im_data += im_height * im_width;
568 569 570
    }
  } else {
#endif
571 572 573 574 575 576 577 578 579 580
    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
      for (int h = 0; h < col_height; ++h) {
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
        for (int w = 0; w < col_width; ++w) {
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
          int col_idx = (c * col_height + h) * col_width + w;
          int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx;
581

582 583 584 585 586
          col_data[col_idx] = (im_row_idx < 0 || im_row_idx >= im_height ||
                               im_col_idx < 0 || im_col_idx >= im_width)
                                  ? static_cast<int8_t>(0)
                                  : im_data[im_idx];
        }
587 588
      }
    }
589
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
590 591 592
  }
#endif
}
朔-望's avatar
朔-望 已提交
593

朔-望's avatar
朔-望 已提交
594 595 596 597 598 599
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [input_channels, filter_height, filter_width, output_height,
 * output_width]
 */
朔-望's avatar
朔-望 已提交
600 601 602
template <class T>
class Col2ImFunctor<ColFormat::kCFO, CPU, T> {
 public:
603 604 605 606 607 608 609 610 611 612 613 614 615
  void operator()(const framework::Tensor &col,
                  const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *im) {
    //    PADDLE_ENFORCE(im->dims().size() == 3);
    //    PADDLE_ENFORCE(col.dims().size() == 5);
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
    int filter_height = col.dims()[1];
    int filter_width = col.dims()[2];
    int col_height = col.dims()[3];
    int col_width = col.dims()[4];
朔-望's avatar
朔-望 已提交
616

617
    int channels_col = im_channels * filter_height * filter_width;
朔-望's avatar
朔-望 已提交
618

619 620
    T *im_data = im->data<T>();
    const T *col_data = col.data<T>();
621
    memset(static_cast<void *>(im_data), 0, sizeof(T) * im->numel());
朔-望's avatar
朔-望 已提交
622

623 624 625 626 627 628 629 630 631 632 633 634 635
    for (int c = 0; c < channels_col; ++c) {
      int w_offset = c % filter_width;
      int h_offset = (c / filter_width) % filter_height;
      int c_im = c / (filter_width * filter_height);
      for (int h = 0; h < col_height; ++h) {
        int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0];
        for (int w = 0; w < col_width; ++w) {
          int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1];
          if ((im_row_idx) >= 0 && (im_row_idx) < im_height &&
              (im_col_idx) >= 0 && (im_col_idx) < im_width) {
            im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] +=
                col_data[(c * col_height + h) * col_width + w];
          }
朔-望's avatar
朔-望 已提交
636
        }
637
      }
朔-望's avatar
朔-望 已提交
638
    }
639
  }
朔-望's avatar
朔-望 已提交
640
};
朔-望's avatar
朔-望 已提交
641

朔-望's avatar
朔-望 已提交
642
template class Im2ColFunctor<ColFormat::kCFO, CPU, float>;
643
template class Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>;
朔-望's avatar
朔-望 已提交
644
template class Col2ImFunctor<ColFormat::kCFO, CPU, float>;
645
template class Col2ImFunctor<ColFormat::kCFO, CPU, int8_t>;
朔-望's avatar
朔-望 已提交
646

朔-望's avatar
朔-望 已提交
647 648 649 650 651 652
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height,
 * filter_width]
 */
朔-望's avatar
朔-望 已提交
653 654 655
template <class T>
class Im2ColFunctor<ColFormat::kOCF, CPU, T> {
 public:
656 657 658 659 660 661 662 663 664 665
  void operator()(const framework::Tensor &im, const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *col) {
    int im_channels = im.dims()[0];
    int im_height = im.dims()[1];
    int im_width = im.dims()[2];
    int filter_height = col->dims()[3];
    int filter_width = col->dims()[4];
    int col_height = col->dims()[0];
    int col_width = col->dims()[1];
朔-望's avatar
朔-望 已提交
666

667 668
    const T *im_data = im.data<T>();
    T *col_data = col->data<T>();
朔-望's avatar
朔-望 已提交
669

670 671 672 673 674 675 676 677 678 679 680
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
朔-望's avatar
朔-望 已提交
681

682 683 684 685 686 687 688
              int col_offset =
                  ((((col_row_idx)*col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
朔-望's avatar
朔-望 已提交
689

690 691 692 693 694 695 696
              int im_offset = (channel * im_height + im_row_offset) * im_width +
                              im_col_offset;
              col_data[col_offset] =
                  (im_row_offset < 0 || im_row_offset >= im_height ||
                   im_col_offset < 0 || im_col_offset >= im_width)
                      ? static_cast<T>(0)
                      : im_data[im_offset];
朔-望's avatar
朔-望 已提交
697
            }
698
          }
朔-望's avatar
朔-望 已提交
699
        }
700
      }
朔-望's avatar
朔-望 已提交
701
    }
702
  }
朔-望's avatar
朔-望 已提交
703
};
朔-望's avatar
朔-望 已提交
704

朔-望's avatar
朔-望 已提交
705 706 707 708 709 710
/*
 * im = [input_channels, input_height, input_width]
 * col =
 *   [output_height, output_width, input_channels, filter_height,
 * filter_width]
 */
朔-望's avatar
朔-望 已提交
711 712 713
template <class T>
class Col2ImFunctor<ColFormat::kOCF, CPU, T> {
 public:
714 715 716 717 718 719 720 721 722 723 724
  void operator()(const framework::Tensor &col,
                  const std::vector<int> &dilation,
                  const std::vector<int> &stride,
                  const std::vector<int> &padding, framework::Tensor *im) {
    int im_channels = im->dims()[0];
    int im_height = im->dims()[1];
    int im_width = im->dims()[2];
    int filter_height = col.dims()[3];
    int filter_width = col.dims()[4];
    int col_height = col.dims()[0];
    int col_width = col.dims()[1];
朔-望's avatar
朔-望 已提交
725

726 727
    T *im_data = im->data<T>();
    const T *col_data = col.data<T>();
朔-望's avatar
朔-望 已提交
728

729 730 731 732 733 734 735 736 737 738 739
    for (int col_row_idx = 0; col_row_idx < col_height; ++col_row_idx) {
      for (int col_col_idx = 0; col_col_idx < col_width; ++col_col_idx) {
        for (int channel = 0; channel < im_channels; ++channel) {
          for (int filter_row_idx = 0; filter_row_idx < filter_height;
               ++filter_row_idx) {
            int im_row_offset =
                col_row_idx * stride[0] + filter_row_idx - padding[0];
            for (int filter_col_idx = 0; filter_col_idx < filter_width;
                 ++filter_col_idx) {
              int im_col_offset =
                  col_col_idx * stride[1] + filter_col_idx - padding[1];
朔-望's avatar
朔-望 已提交
740

741 742 743 744 745 746 747
              int col_offset =
                  (((col_row_idx * col_width + col_col_idx) * im_channels +
                    channel) *
                       filter_height +
                   filter_row_idx) *
                      filter_width +
                  filter_col_idx;
朔-望's avatar
朔-望 已提交
748

749 750 751 752 753 754 755
              if (im_row_offset >= 0 && im_row_offset < im_height &&
                  im_col_offset >= 0 && im_col_offset < im_width) {
                int im_offset =
                    (channel * im_height + im_row_offset) * im_width +
                    im_col_offset;
                im_data[im_offset] += col_data[col_offset];
              }
朔-望's avatar
朔-望 已提交
756
            }
757
          }
朔-望's avatar
朔-望 已提交
758
        }
759
      }
朔-望's avatar
朔-望 已提交
760
    }
761
  }
朔-望's avatar
朔-望 已提交
762
};
朔-望's avatar
朔-望 已提交
763

朔-望's avatar
朔-望 已提交
764 765
template class Im2ColFunctor<ColFormat::kOCF, CPU, float>;
template class Col2ImFunctor<ColFormat::kOCF, CPU, float>;
朔-望's avatar
朔-望 已提交
766

朔-望's avatar
朔-望 已提交
767 768 769
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile