api.cpp 16.0 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "fpga/api.h"
H
hanbuhe 已提交
16 17
#include <fcntl.h>
#include <sys/ioctl.h>
18
#include <sys/mman.h>
H
hanbuhe 已提交
19
#include <algorithm>
20 21 22 23
#include <map>
#include "fpga/bias_scale.h"
#include "fpga/filter.h"
#include "fpga/image.h"
Z
zhangyang 已提交
24
#define FPGA_TEST_MODE
25
#define PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
26

Z
zhangyang 已提交
27
namespace paddle_mobile {
H
hanbuhe 已提交
28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";
32
static std::map<void *, size_t> memory_map;
H
hanbuhe 已提交
33

H
hanbuhe 已提交
34
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
35
#ifdef PADDLE_MOBILE_OS_LINUX
36 37 38
  int result = ioctl(fd, req, (uint64_t)arg);
  PADDLE_MOBILE_ENFORCE(result == 0, "ioctl didn't return correctly");
  return result;
H
hanbuhe 已提交
39 40 41
#else
  return -1;
#endif
Z
zhangyang 已提交
42
}
H
hanbuhe 已提交
43 44 45 46 47 48 49 50 51 52

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
53 54
  static uint64_t counter = 0;

H
hanbuhe 已提交
55
#ifdef PADDLE_MOBILE_OS_LINUX
56
  auto ptr = mmap64(nullptr, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
H
hanbuhe 已提交
57
#else
58
  auto ptr = malloc(size);
H
hanbuhe 已提交
59
#endif
60 61
  counter += size;
  memory_map.insert(std::make_pair(ptr, size));
Z
zhangyang 已提交
62 63
  //  DLOG << "Address: " << ptr << ", " << size << " bytes allocated. Total "
  //       << counter << " bytes";
64
  return ptr;
H
hanbuhe 已提交
65 66
}

67
void fpga_free(void *ptr) {
68 69 70 71 72 73 74
  static uint64_t counter = 0;
  size_t size = 0;

  auto iter = memory_map.find(ptr);  // std::map<void *, size_t>::iterator
  if (iter != memory_map.end()) {
    size = iter->second;
    memory_map.erase(iter);
Z
zhangyang 已提交
75
#ifdef PADDLE_MOBILE_OS_LINUX
76
    munmap(ptr, size);
77
#else
78
    free(ptr);
79
#endif
80
    counter += size;
Z
zhangyang 已提交
81 82
    //    DLOG << "Address: " << ptr << ", " << size << " bytes freed. Total "
    //         << counter << " bytes";
83 84 85
  } else {
    DLOG << "Invalid pointer";
  }
86
}
H
hanbuhe 已提交
87 88 89 90 91

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105
int fpga_flush(void *address, size_t size) {
  struct MemoryCacheArgs args = {nullptr};
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
  struct MemoryCacheArgs args = {nullptr};
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
half fp32_2_fp16(float fp32_num) {
  unsigned long tmp = *(unsigned long *)(&fp32_num);
  half t = ((tmp & 0x007fffff) >> 13) | ((tmp & 0x80000000) >> 16) |
           (((tmp & 0x7f800000) >> 13) - (112 << 10));
  if (tmp & 0x1000) {
    t++;  // roundoff
  }
  return t;
}

float fp16_2_fp32(half fp16_num) {
  int frac = (fp16_num & 0x3ff);
  int exp = ((fp16_num & 0x7c00) >> 10) + 112;
  int s = fp16_num & 0x8000;
  int tmp = 0;
  float fp32_num;
  tmp = s << 16 | exp << 23 | frac << 13;
  fp32_num = *(float *)&tmp;
  return fp32_num;
}

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
int ComputeBasicConv(const struct ConvArgs &args) {
  DLOG << "======Compute Basic Conv======";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;

  return do_ioctl(IOCTL_CONFIG_CONV, &args);
}

Z
zhangyang 已提交
151
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
152
#ifdef FPGA_TEST_MODE
153 154 155 156
  DLOG << "=============ComputeFPGAConv===========";
  DLOG << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num
       << "   split_num:" << args.split_num;
Z
zhangyang 已提交
157
#endif
158

Z
zhangyang 已提交
159 160
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
161
    ComputeBasicConv(args.conv_args[i]);
Z
zhangyang 已提交
162
  }
Z
zhangyang 已提交
163

Z
zhangyang 已提交
164 165 166
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
167
}
Z
zhangyang 已提交
168

H
hanbuhe 已提交
169
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
170
#ifdef FPGA_TEST_MODE
171
  DLOG << "=============ComputeFpgaPool===========";
Z
zhangyang 已提交
172 173
  DLOG << "   mode:" << args.mode
       << "   kernel_reciprocal:" << fp16_2_fp32(args.kernel_reciprocal);
Z
zhangyang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
189
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
190
}
Z
zhangyang 已提交
191

H
hanbuhe 已提交
192
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
193
#ifdef FPGA_TEST_MODE
194
  DLOG << "=============ComputeFpgaEWAdd===========";
Z
zhangyang 已提交
195 196 197 198 199 200 201 202 203 204
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
205
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
206 207 208 209 210 211 212 213 214
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
215 216 217
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
218
#ifdef FPGA_TEST_MODE
219 220 221 222 223
  DLOG << "=============ComputeFpgaBypass===========";
  DLOG << "   input_type:" << args.input_data_type
       << "   output_type:" << args.output_data_type
       << "   input_layout_type:" << args.input_layout_type
       << "   output_layout_type:" << args.output_layout_type;
Z
zhangyang 已提交
224 225 226 227 228 229 230 231 232 233 234
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
235
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
236
}
Z
zhangyang 已提交
237

Z
zhangyang 已提交
238
int ComputeFPGAConcat(const struct ConcatArgs &args) {
239 240 241 242 243 244 245 246 247 248 249 250 251 252
#ifdef FPGA_TEST_MODE
  DLOG << "=============ComputeFpgaConcat===========";
  DLOG << "   Image_num: " << args.image_num
       << "   out_address:" << args.image_out
       << "   out_scale_address:" << args.scale_out;
  DLOG << "   image_height:" << args.height << "   image_width:" << args.width;
  for (int i = 0; i < args.image_num; i++) {
    DLOG << "   " << i << "th:        ";
    DLOG << "   channel_num:" << args.channel_num[i]
         << "   image_address:" << args.images_in[i]
         << "   image_scale_address:" << args.scales_in[i];
  }
#endif

Z
zhangyang 已提交
253 254 255 256 257 258
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

259 260
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
261 262
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
263
  auto channel = dims[1], height = dims[2], width = dims[3];
264
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
265
  size_t memory_size = channel * height * width * sizeof(float);
266
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
267 268 269 270 271
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

272
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
273
  auto dims = ofm_tensor->dims();
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
304 305
}

Z
zhangyang 已提交
306 307 308 309
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
310 311 312

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
313 314
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
315 316 317 318
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

319
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
320
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
321 322
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
323 324 325 326
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
327 328 329 330 331 332 333 334
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
335 336
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
337 338
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
339
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
340
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
341
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
342
  size_t memory_size = num * channel * height * width * sizeof(float);
343
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
344 345 346 347 348 349 350 351 352 353 354 355
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
356 357 358 359 360 361 362 363 364
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
365
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
366 367 368 369
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

370 371 372 373 374 375
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
376
  auto out_ptr = out->data<float>();
377 378

  arg->group_num = (uint32_t)group_num;
379 380
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
381 382 383
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
384 385
  arg->conv_args =
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
386 387 388 389 390 391 392 393

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
394 395 396 397
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
398
  arg->concat_arg.channel_num =
399
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT
400 401
  arg->concat_arg.image_out = out_ptr;

402 403 404
  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
421 422 423 424 425 426 427
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_args[i].filter_num = (uint32_t)(
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
428 429 430

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
431 432 433 434 435 436 437
          (float *)fpga_malloc(2 * sizeof(float));  // NOLINT
      arg->conv_args[i].output.address = fpga_malloc(
          input->dims()[2] *
          align_to_x(input->dims()[3] * arg->conv_args[i].filter_num,
                     IMAGE_ALIGNMENT) *
          sizeof(half));
    } else {
438 439 440 441
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

442 443 444
    arg->concat_arg.images_in[i] =
        (half *)arg->conv_args[i].output.address;  // NOLINT
    arg->concat_arg.scales_in[i] = arg->conv_args[i].output.scale_address;
445 446 447 448
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
449
}  // namespace fpga
Z
zhangyang 已提交
450
}  // namespace paddle_mobile