api.cpp 12.1 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16
#include <fcntl.h>
17 18
#include <stdio.h>
#include <stdlib.h>
H
hanbuhe 已提交
19 20
#include <sys/ioctl.h>
#include <algorithm>
21
#include <cstring>
Z
zhangyang 已提交
22 23 24
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
25

Z
zhangyang 已提交
26 27
#define FPGA_TEST_MODE

Z
zhangyang 已提交
28
namespace paddle_mobile {
H
hanbuhe 已提交
29 30 31 32 33
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
34
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
35
#ifdef PADDLE_MOBILE_OS_LINUX
36
  return ioctl(req, (unsigned int64_t)arg);
H
hanbuhe 已提交
37 38 39
#else
  return -1;
#endif
Z
zhangyang 已提交
40
}
H
hanbuhe 已提交
41 42 43 44 45 46 47 48 49 50

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
H
hanbuhe 已提交
51
#ifdef PADDLE_MOBILE_OS_LINUX
52 53
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
54
#else
55
  return malloc(size);
H
hanbuhe 已提交
56
#endif
H
hanbuhe 已提交
57 58
}

59
void fpga_free(void *ptr) {
Z
zhangyang 已提交
60
#ifdef PADDLE_MOBILE_OS_LINUX
61
  munmap(ptr, 0);
62
#else
63
  free(ptr);
64 65
#endif
}
H
hanbuhe 已提交
66 67 68 69 70

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

Z
zhangyang 已提交
71
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
72
#ifdef FPGA_TEST_MODE
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/*DLOG << "   relu_enabled:" << args.relu_enabled
     << "   sb_address:" << args.sb_address
     << "   filter_address:" << args.filter_address
     << "   filter_num:" << args.filter_num
     << "   group_num:" << args.group_num;
DLOG << "   image_address:" << args.image.address
     << "   image_scale_address:" << args.image.scale_address
     << "   image_channels:" << args.image.channels
     << "   image_height:" << args.image.height
     << "   image_width:" << args.image.width
     << "   pad_height:" << args.image.pad_height
     << "   pad_width:" << args.image.pad_width;
DLOG << "   kernel_height:" << args.kernel.height
     << "   kernel_width:" << args.kernel.width
     << "   stride_h:" << args.kernel.stride_h
     << "   stride_w:" << args.kernel.stride_w;
DLOG << "   out_address:" << args.output.address
     << "   out_scale_address:" << args.output.scale_address;*/
Z
zhangyang 已提交
91
#endif
Z
zhangyang 已提交
92 93
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
94
    do_ioctl(IOCTL_CONFIG_CONV, &args.conv_args[i]);
Z
zhangyang 已提交
95
  }
Z
zhangyang 已提交
96

Z
zhangyang 已提交
97 98 99
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
100
}
Z
zhangyang 已提交
101

H
hanbuhe 已提交
102
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef FPGA_TEST_MODE
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
119
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
120
}
Z
zhangyang 已提交
121

H
hanbuhe 已提交
122
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
123 124 125 126 127 128 129 130 131 132 133
#ifdef FPGA_TEST_MODE
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
134
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
135 136 137 138 139 140 141 142 143
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
144 145 146
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
147
#ifdef FPGA_TEST_MODE
148 149
  DLOG << "   layout_type:" << args.layout_type
       << "   convert_type:" << args.convert_type;
Z
zhangyang 已提交
150 151 152 153 154 155 156 157 158 159 160
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
161
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
162
}
Z
zhangyang 已提交
163

Z
zhangyang 已提交
164 165 166 167 168 169 170
int ComputeFPGAConcat(const struct ConcatArgs &args) {
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
171 172
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
173
  auto channel = dims[1], height = dims[2], width = dims[3];
174
  auto data_ptr = image_tensor->mutable_data<float>();
Z
zhangyang 已提交
175
  size_t memory_size = channel * height * width * sizeof(float);
176
  float *new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
177 178 179 180 181
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

182
void format_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
183
  auto dims = ofm_tensor->dims();
184 185 186 187
  auto channel = dims[1], height = dims[2], width = dims[3];
  size_t memory_size =
      height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  ofm_tensor->reset_data_ptr(fpga_malloc(memory_size));
Z
zhangyang 已提交
188 189
}

Z
zhangyang 已提交
190 191 192 193
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
194 195 196

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
197 198
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
199 200 201 202
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

203
int get_element_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
204
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
205 206
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
207 208 209 210
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
211 212 213 214 215 216 217 218
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
219 220
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
221 222
  filter_tensor->scale[0] = float(max_value / 127.0);
  filter_tensor->scale[1] = float(127.0 / max_value);
Z
zhangyang 已提交
223
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
224
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
225
  auto data_ptr = filter_tensor->mutable_data<float>();
Z
zhangyang 已提交
226
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
227
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
228 229 230 231 232 233 234 235 236 237 238 239
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
240 241 242 243 244 245 246 247 248
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
249
  auto ddim = framework::make_ddim({-1, sum_channel, height, width});
Z
zhangyang 已提交
250 251 252 253
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

254 255 256 257 258 259
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
260
  auto out_ptr = out->mutable_data<float>();
261 262

  arg->group_num = (uint32_t)group_num;
263
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
264 265 266
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
267 268
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));
269 270 271 272 273 274 275 276

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
277 278 279 280
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
281 282
  arg->concat_arg.image_out = out_ptr;

283 284 285
  const int channel = (int)out->dims()[1];
  int element_num_per_div = fpga::get_element_num_per_div(filter, group_num);
  int element_num = fpga::get_aligned_filter_element_num(
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
302 303
    arg->conv_args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
    arg->conv_args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
304
    arg->conv_args[i].filter_num =
305 306 307
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
                                    channel - (n - 1) * element_num_per_div)
                              : element_num_per_div);
308 309 310

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
311 312 313 314
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
315 316 317 318 319 320 321 322
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
323
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
324 325 326 327
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
328
}  // namespace fpga
Z
zhangyang 已提交
329
}  // namespace paddle_mobile