interpolate_compute.h 4.4 KB
Newer Older
J
jiaopu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <Eigen/Core>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/interpolate_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

inline void nearest_interp(const float* src,
                           int w_in,
                           int h_in,
                           float* dst,
                           int w_out,
                           int h_out,
                           bool with_align) {
  float scale_w_new = (with_align)
                          ? (static_cast<float>(w_in - 1) / (w_out - 1))
                          : (static_cast<float>(w_in) / (w_out));
  float scale_h_new = (with_align)
                          ? (static_cast<float>(h_in - 1) / (h_out - 1))
                          : (static_cast<float>(h_in) / (h_out));
  if (with_align) {
    for (int h = 0; h < h_out; ++h) {
      float* dst_p = dst + h * w_out;
      int near_y = static_cast<int>(scale_h_new * h + 0.5);
      for (int w = 0; w < w_out; ++w) {
        int near_x = static_cast<int>(scale_w_new * w + 0.5);
        *dst_p++ = src[near_y * w_in + near_x];
      }
    }
  } else {
    for (int h = 0; h < h_out; ++h) {
      float* dst_p = dst + h * w_out;
      int near_y = static_cast<int>(scale_h_new * h);
      for (int w = 0; w < w_out; ++w) {
        int near_x = static_cast<int>(scale_w_new * w);
        *dst_p++ = src[near_y * w_in + near_x];
      }
    }
  }
}

inline std::vector<int> get_new_shape(
    std::vector<const lite::Tensor*> list_new_shape_tensor) {
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
  }

  return vec_new_shape;
}

class InterpolateCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::InterpolateParam;

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    int in_h = param.X->dims()[2];
    int in_w = param.X->dims()[3];
    if (param.SizeTensor.size() > 0) {
      auto new_size = get_new_shape(param.SizeTensor);
      param.out_h = new_size[0];
      param.out_w = new_size[1];
    } else {
      auto scale_tensor = param.Scale;
      if (scale_tensor != nullptr) {
        auto* scale_data = param.Scale->mutable_data<float>();
        param.scale = scale_data[0];
      }
      if (param.scale > 0) {
        param.out_h = static_cast<int>(in_h * param.scale);
        param.out_w = static_cast<int>(in_w * param.scale);
      }
      if (param.OutSize != nullptr) {
        auto* outsize_data = param.OutSize->mutable_data<float>();
        param.out_h = outsize_data[0];
        param.out_w = outsize_data[1];
      }
    }

    int num_cout = param.X->dims()[0];
    int c_cout = param.X->dims()[1];
    param.Out->Resize({num_cout, c_cout, param.out_h, param.out_w});

    float* dout = param.Out->mutable_data<float>();
    const float* din = param.X->data<float>();
    int out_num = param.Out->dims()[0];
    int out_c = param.Out->dims()[1];
    int count = out_num * out_c;
    int out_h = param.Out->dims()[2];
    int out_w = param.Out->dims()[3];
    int spatial_in = in_h * in_w;
    int spatial_out = out_h * out_w;

#pragma omp parallel for
    for (int i = 0; i < count; ++i) {
      nearest_interp(din + spatial_in * i,
                     in_w,
                     in_h,
                     dout + spatial_out * i,
                     out_w,
                     out_h,
                     param.align_corners);
    }
  }

  virtual ~InterpolateCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle