test_gemm_perf.cpp 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include "../test_helper.h"
17
#include "../test_include.h"
18 19 20 21 22 23 24
#include "operators/math/gemm.h"
#include "operators/math/math_function.h"

#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
#define c1(i, j) c1[(i)*ldc + (j)]

Z
Zhen Wang 已提交
25 26 27
#define m 1024
#define n 1024
#define k 1024
28 29

int main() {
30
  paddle_mobile::PaddleMobile<paddle_mobile::CPU> paddle_mobile;
31
  paddle_mobile.SetThreadNum(4);
Z
Zhen Wang 已提交
32
  Tensor aa, bb, cc;
33 34 35 36 37 38 39 40 41 42 43 44 45
  auto aaptr = aa.mutable_data<float>({m, k});
  auto bbptr = bb.mutable_data<float>({k, n});
  auto ccptr = cc.mutable_data<float>({m, n});

  for (int i = 0; i < m * k; ++i) {
    aaptr[i] = 2;
  }
  for (int i = 0; i < k * n; ++i) {
    bbptr[i] = 2;
  }
  for (int i = 0; i < m * n; ++i) {
    ccptr[i] = 2;
  }
Z
Zhen Wang 已提交
46

47
  Tensor aa_int8, bb_int8, cc_int32, cc_int8;
Z
Zhen Wang 已提交
48 49
  auto aaptr_int8 = aa_int8.mutable_data<int8_t>({m, k});
  auto bbptr_int8 = bb_int8.mutable_data<int8_t>({k, n});
50 51 52
  auto ccptr_int32 = cc_int32.mutable_data<int32_t>({m, n});
  auto ccptr_int8 = cc_int8.mutable_data<int8_t>({m, n});
  int32_t* bias_data = new int32_t[m];
Z
Zhen Wang 已提交
53 54 55 56 57 58 59 60

  for (int i = 0; i < m * k; ++i) {
    aaptr_int8[i] = static_cast<int8_t>(2);
  }
  for (int i = 0; i < k * n; ++i) {
    bbptr_int8[i] = static_cast<int8_t>(2);
  }
  for (int i = 0; i < m * n; ++i) {
61 62 63 64 65
    ccptr_int32[i] = static_cast<int32_t>(2);
  }

  for (int i = 0; i < m; ++i) {
    bias_data[i] = 2;
66 67
  }

Z
Zhen Wang 已提交
68 69
  // float
  // warm-up 10 times
70
  for (int j = 0; j < 10; ++j) {
71 72
    paddle_mobile::operators::math::matmul<float>(
        aa, false, bb, false, static_cast<float>(1), &cc, static_cast<float>(0),
Z
Zhen Wang 已提交
73 74
        false, nullptr);
  }
75

Z
Zhen Wang 已提交
76 77 78 79 80
  auto time1 = time();
  for (int j = 0; j < 10; ++j) {
    paddle_mobile::operators::math::matmul<float>(
        aa, false, bb, false, static_cast<float>(1), &cc, static_cast<float>(0),
        false, nullptr);
81 82
  }
  auto time2 = time();
Z
Zhen Wang 已提交
83 84
  std::cout << "float gemm  cost :" << time_diff(time1, time2) / 10 << "ms\n";

85
  // int8_t without bias
Z
Zhen Wang 已提交
86 87
  // warm-up 10 times
  for (int j = 0; j < 10; ++j) {
88 89 90
    paddle_mobile::operators::math::matmul_int8(
        aa_int8, false, bb_int8, false, static_cast<float>(1), &cc_int32,
        static_cast<float>(0), false, nullptr);
Z
Zhen Wang 已提交
91 92 93 94
  }

  auto time3 = time();
  for (int j = 0; j < 10; ++j) {
95 96 97
    paddle_mobile::operators::math::matmul_int8(
        aa_int8, false, bb_int8, false, static_cast<float>(1), &cc_int32,
        static_cast<float>(0), false, nullptr);
Z
Zhen Wang 已提交
98 99 100
  }
  auto time4 = time();
  std::cout << "int8_t gemm  cost :" << time_diff(time3, time4) / 10 << "ms\n";
101

102 103 104 105
  // int8_t with bias&relu
  // warm-up 10 times
  for (int j = 0; j < 10; ++j) {
    paddle_mobile::operators::math::matmul_int8(
106
        aa_int8, false, bb_int8, false, static_cast<float>(0.618), &cc_int8,
107 108 109 110 111
        static_cast<float>(0), true, &bias_data[0]);
  }
  auto time5 = time();
  for (int j = 0; j < 10; ++j) {
    paddle_mobile::operators::math::matmul_int8(
112
        aa_int8, false, bb_int8, false, static_cast<float>(0.618), &cc_int8,
113 114 115 116 117 118 119 120
        static_cast<float>(0), true, &bias_data[0]);
  }
  auto time6 = time();
  std::cout << "int8_t gemm_with_bias_relu cost :"
            << time_diff(time5, time6) / 10 << "ms\n";

  delete[] bias_data;

121 122
  return 0;
}