model_quantization.md 15.9 KB
Newer Older
1
# 模型量化-量化训练
2

3
本文主要介绍使用Paddle-Lite加载PaddlePaddle产出的量化模型,并进行推理执行。我们以MobileNetV1模型为示例,首先说明产出量化模型,然后说明预测部署。
4

5
## 1 简介
6

7
量化训练是基于大量训练数据,对训练好的预测模型进行量化。该方法使用模拟量化的思想,在训练阶段更新权重,实现减小量化误差。
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
使用条件:
* 有预训练模型
* 有较多训练数据

使用步骤:
* 产出量化模型:使用PaddlePaddle调用量化训练接口,产出量化模型
* 量化模型预测:使用PaddleLite加载量化模型进行预测推理

优点:
* 减小计算量、降低计算内存、减小模型大小
* 模型精度受量化影响小

缺点:
* 使用条件较苛刻,使用门槛稍高

建议首先使用“有校准数据训练后量化”对模型进行量化,然后使用使用量化模型进行预测。如果该量化模型的精度达不到要求,再使用“量化训练”。


## 2 产出量化模型
28 29 30 31 32 33 34

目前,PaddlePaddle框架的量化训练主要针对卷积层(包括二维卷积和Depthwise卷积)、和全连接层,对应算子是conv2d、depthwise_conv2d和mul,更多量化训练的原理请参考[文档](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#1-quantization-aware-training%E9%87%8F%E5%8C%96%E4%BB%8B%E7%BB%8D)。Paddle-Lite支持运行PaddlePaddle框架量化训练产出的模型,可以进一步加快模型在移动端的执行速度。

温馨提示:如果您是初次接触PaddlePaddle框架,建议首先学习[新人入门](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/beginners_guide/index_cn.html)[使用指南](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/user_guides/index_cn.html)

您可以选择下载训练好的量化模型,或者使用PaddleSlim模型压缩工具训练得到量化模型。

35
### 下载量化模型
36 37 38 39 40 41 42

官方发布了[MobileNetV1量化模型](https://paddle-inference-dist.bj.bcebos.com/int8%2Fpretrain%2Fmobilenet_v1_quant%2Ffloat.zip),直接下载到本地。

```bash
wget https://paddle-inference-dist.bj.bcebos.com/int8%2Fpretrain%2Fmobilenet_v1_quant%2Ffloat.zip
```

43
### 使用PaddleSlim模型压缩工具训练量化模型
44

45
#### 安装PaddlePaddle
46 47 48 49 50 51 52 53 54 55 56 57 58

根据操作系统、安装方式、Python版本和CUDA版本,按照[官方说明](https://paddlepaddle.org.cn/start)安装PaddlePaddle。例如:

Ubuntu 16.04.4 LTS操作系统,CUDA9,cuDNN7,GPU版本安装:
```bash
pip install paddlepaddle-gpu==1.6.0.post97 -i https://mirrors.aliyun.com/pypi/simple/
```

Ubuntu 16.04.4 LTS操作系统,CPU版本安装:
```bash
pip install paddlepaddle==1.6.0 -i https://mirrors.aliyun.com/pypi/simple/
```

59
#### 克隆量化训练所需的代码库
60 61 62 63 64 65 66 67

克隆[PaddlePaddle/models](https://github.com/PaddlePaddle/models)到本地,并进入models/PaddleSlim路径。

```bash
git clone https://github.com/PaddlePaddle/models.git
cd models/PaddleSlim
```

68 69 70
#### 准备数据和模型

##### 训练数据准备
71 72 73

参考[models/PaddleCV/image_classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#data-preparation)中的数据准备教程,下载训练数据,并且保存到PaddleSlim/data路径下。

74
##### 预训练模型准备
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

参考/models/PaddleSlim/run.sh脚本, 从[models/PaddleCV/image_classification](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification#supported-models-and-performances)下载MobileNetV1的预训练模型,并保存到PaddleSlim/pretrain路径下。

经过以上三步,PaddleSlim目录下的文件结构如下所示:

```bash
.
├── compress.py # 模型压缩任务主脚本,定义了压缩任务需要的模型相关信息
├── configs # 压缩任务的配置文件,包括:蒸馏、int8量化量化、filter剪切和组合策略的配置文件
├── data # 存放训练数据(需要用户自己创建)
│   └── ILSVRC2012
├── pretrain # 存放预训练模型参数,执行run.sh自动生成
│   ├── MobileNetV1_pretrained
│   ├── MobileNetV1_pretrained.tar
│   ├── ResNet50_pretrained
│   └── ResNet50_pretrained.tar
├── docs # 文档目录
├── light_nas
├── models # 模型网络结构的定义,如MobileNetV1
├── quant_low_level_api # 量化训练的底层API, 用于灵活定制量化训练的过程,适用于高阶用户
├── reader.py # 定义数据处理逻辑
├── README.md
├── run.sh # 模型压缩任务启动脚本
└── utility.py # 定义了常用的工具方法
```

##### 压缩脚本介绍

`compress.py`中定义了执行压缩任务需要的所有模型相关的信息,这里对几个关键的步骤进行简要介绍:

105
**目标网络的定义**
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
compress.py的以下代码片段定义了train program, 这里train program只有前向计算操作。
```python
out = model.net(input=image, class_dim=args.class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
```

然后,通过clone方法得到eval_program, 用来在压缩过程中评估模型精度,如下:

```python
val_program = fluid.default_main_program().clone()
```

定义完目标网络结构,需要对其初始化,并根据需要加载预训练模型。

123
**定义feed_list和fetch_list**
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
对于train program, 定义train_feed_list用于指定从train data reader中取的数据feed给哪些variable。定义train_fetch_list用于指定在训练时,需要在log中展示的结果。如果需要在训练过程中在log中打印accuracy信心,则将('acc_top1', acc_top1.name)添加到train_fetch_list中即可。
```python
train_feed_list = [('image', image.name), ('label', label.name)]
train_fetch_list = [('loss', avg_cost.name)]
```

> 注意: 在train_fetch_list里必须有loss这一项。

对于eval program. 同上定义eval_feed_list和train_fetch_list:

```python
val_feed_list = [('image', image.name), ('label', label.name)]
val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5', acc_top5.name)]
```

139
**Compressor和量化配置文件**
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
`compress.py`主要使用Compressor和yaml文件完成对模型的量化训练工作。Compressor类的定义如下:
```python
class Compressor(object):
    def __init__(self,
                 place,
                 scope,
                 train_program,
                 train_reader=None,
                 train_feed_list=None,
                 train_fetch_list=None,
                 eval_program=None,
                 eval_reader=None,
                 eval_feed_list=None,
                 eval_fetch_list=None,
                 teacher_programs=[],
                 checkpoint_path='./checkpoints',
                 train_optimizer=None,
                 distiller_optimizer=None):
```

在定义Compressor对象时,需要注意以下问题:
* train program如果带反向operators和优化更新相关的operators, 参数train_optimizer需要设置为None.
* eval_program中parameter的名称需要与train_program中的parameter的名称完全一致。
* 最终保存的量化模型是在eval_program网络基础上进行剪枝保存的。所以,如果用户希望最终保存的模型可以用于inference, 则eval program需要包含推理阶段需要的各种operators.
* checkpoint保存的是float数据类型的模型。

`configs/quantization.yaml`量化配置文件示例如下:

```python
version: 1.0
strategies:
    quantization_strategy:
        class: 'QuantizationStrategy'
        start_epoch: 0
        end_epoch: 9
        float_model_save_path: './output/float'
        mobile_model_save_path: './output/mobile'
        int8_model_save_path: './output/int8'
        weight_bits: 8
        activation_bits: 8
        weight_quantize_type: 'abs_max'
        activation_quantize_type: 'moving_average_abs_max'
        save_in_nodes: ['image']
        save_out_nodes: ['fc_0.tmp_2']
compressor:
    epoch: 10
    checkpoint_path: './checkpoints_quan/'
    strategies:
        - quantization_strategy
```
其中,可配置参数包括:
- **class:** 量化策略的类名称,目前仅支持`QuantizationStrategy`
- **start_epoch:** 在start_epoch开始之前,量化训练策略会往train_program和eval_program插入量化operators和反量化operators。 从start_epoch开始,进入量化训练阶段。
- **end_epoch:** 在end_epoch结束之后,会保存用户指定格式的模型。注意:end_epoch之后并不会停止量化训练,而是继续训练直到epoch数等于compressor.epoch值为止。举例来说,当start_epoch=0,end_epoch=0,compressor.epoch=2时,量化训练开始于epoch0,结束于epoch1,但保存的模型是epoch0结束时的参数状态。
- **float_model_save_path:**  保存float数据格式的模型路径,即该路径下的模型参数范围为int8范围但参数数据类型为float32。如果设置为None, 则不存储float格式的模型,默认为None。**注意:Paddle-Lite即使用该目录下的模型进行量化模型推理优化,详见本文[使用Paddle-Lite运行量化模型推理](#二使用Paddle-Lite运行量化模型推理)部分。**
- **int8_model_save_path:** 保存int8数据格式的模型路径,即该路径下的模型参数范围为int8范围且参数数据类型为int8。如果设置为None, 则不存储int8格式的模型,默认为None.
- **mobile_model_save_path:** 保存兼容paddle-mobile框架的模型路径。如果设置为None, 则不存储paddle-mobile格式的模型,默认为None。目前paddle-mobile已升级为Paddle-Lite。
- **weight_bits:** 量化weight的bit数,注意偏置(bias)参数不会被量化。
- **activation_bits:** 量化activation的bit数。
-  **weight_quantize_type:** weight量化方式,目前量化训练支持`abs_max``channel_wise_abs_max`
- **activation_quantize_type:** activation量化方式,目前量化训练支持`range_abs_max``moving_average_abs_max`。PaddlePaddle中还支持 `abs_max` 方法对激活进行量化,但是该方法动态计算输入的量化scale,这会增加计算量、减慢模型推理速度,所以lite不支持 `abs_max`激活量化方式。
- **save_in_nodes:** variable名称列表。在保存量化后模型的时候,需要根据save_in_nodes对eval programg 网络进行前向遍历剪枝。默认为eval_feed_list内指定的variable的名称列表。
- **save_out_nodes:** varibale名称列表。在保存量化后模型的时候,需要根据save_out_nodes对eval programg 网络进行回溯剪枝。默认为eval_fetch_list内指定的variable的名称列表。

> **备注:**
>
> 1)`abs_max`意为在训练的每个step及inference阶段均动态计算量化scale值。`channel_wise_abs_max`与`abs_max`类似,不同点在于它会对卷积权重进行分channel求取量化scale。换言之,`abs_max`属于tensor-wise量化,而`channel_wise_abs_max`属于channel-wise量化,详细说明请猛戳[此处](https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/quantization/training_quantization_model_format.md)。
> 
> 2)`moving_average_abs_max`和`range_abs_max`意为在训练阶段计算出一个静态的量化scale值,并将其用于inference阶段。`moving_average_abs_max`使用窗口滑动平均的方法计算量化scale,而`range_abs_max`则使用窗口绝对值最大值的方式。
> 
> 3)**目前,Paddle-Lite仅支持运行weight量化方式使用`abs_max`且activation量化方式使用`moving_average_abs_max`或`range_abs_max`产出的量化模型**。

212
#### 执行量化训练
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

修改run.sh,即注释掉`# enable GC strategy``# for sensitivity filter pruning`之间的内容并打开`#for quantization`相关的脚本命令(所需打开注释的命令如下所示)。

```bash
# for quantization
#---------------------------
export CUDA_VISIBLE_DEVICES=0
python compress.py \
--batch_size 64 \
--model "MobileNet" \
--pretrained_model ./pretrain/MobileNetV1_pretrained \
--compress_config ./configs/quantization.yaml \
--quant_only True
```
最后,运行`sh run.sh`命令开始int8量化训练。

上述量化训练过程完成后,若按照本文中所述`configs/quantization.yaml`文件内容配置的模型输出路径,则可在models/PaddleSlim/output目录下看到`float``int8``mobile`三个目录,其中:
* float目录: 参数范围为int8范围但参数数据类型为float32的量化模型。Paddle-Lite即使用该目录下的模型文件及参数进行量化模型的部署。
* int8目录: 参数范围为int8范围且参数数据类型为int8的量化模型。
* mobile目录:参数特点与int8目录相同且兼容paddle-mobile的量化模型(目前paddle-mobile已升级为Paddle-Lite)。

234
## 3 使用Paddle-Lite运行量化模型推理
235

236
### 使用模型优化工具对量化模型进行优化
237 238 239

接下来,使用原始的量化模型生成适合在移动端直接部署的模型。

240
参考[源码编译](source_compile)配置编译环境,确保可以编译成功。参考[模型转化方法](model_optimize_tool),首先编译model_optimize_tool工具,然后执行下面命令对量化训练的模型进行优化(注意,需要自行修改model_file、param_file和optimize_out)。
241 242 243 244 245 246 247 248 249 250 251
```bash
./model_optimize_tool                         \
--model_file=mobilenet_v1_quant/float/model   \
--param_file=mobilenet_v1_quant/float/weights \
--optimize_out_type=naive_buffer              \
--optimize_out=mobilenet_v1_quant_opt         \
--valid_targets=arm                           \
```

如前所述,量化训练后,float目录下的模型参数范围为int8,但参数数据类型仍为float32类型,这样确实没有起到模型参数压缩的效果。但是,经过model\_optimize\_tool工具优化后对应的量化参数均会以int8类型重新存储达到参数压缩的效果,且模型结构也被优化(如进行了各种operator fuse操作)。

252
### 在手机端准备量化模型文件
253 254 255 256 257 258 259

使用如下命令将mobilenet_v1_quant_opt目录下的量化模型文件导入到手机端:

```bash
adb push mobilenet_v1_quant_opt /data/local/tmp
```

260
### 使用mobilenetv1\_light\_api运行优化后的量化模型
261

262
参考[源码编译](source_compile)配置编译环境后,在Paddle-Lite执行如下命令获取轻量级API的demo:
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

```bash
cd /Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/demo/cxx/mobile_light
make clean && make -j
```
执行完上述命令后,可在`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/demo/cxx/mobile_light/`路径下看到`mobilenetv1_light_api`可执行文件。将`mobilenetv1_light_api`导入到手机端并运行量化模型推理。执行命令如下:

```bash
adb push Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/demo/cxx/mobile_light/mobilenetv1_light_api /data/local/tmp
adb shell chmod +x /data/local/tmp/mobilenetv1_light_api
adb shell /data/local/tmp/mobilenetv1_light_api               \
    --model_dir=/data/local/tmp/mobilenet_v1_quant_opt
```
**程序运行结果如下:**
```bash
Output dim: 1000
Output[0]: 0.000228
Output[100]: 0.000260
Output[200]: 0.000250
Output[300]: 0.000560
Output[400]: 0.000950
Output[500]: 0.000275
Output[600]: 0.005143
Output[700]: 0.002509
Output[800]: 0.000538
Output[900]: 0.000969
```
290
在C++中使用Paddle-Lite API的方法请猛戳[此处](../demo_guides/cpp_demo),用户也可参考[mobilenetv1_light_api.cc](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/lite/demo/cxx/mobile_light/mobilenetv1_light_api.cc)的代码示例。
291

292
## FAQ
293 294 295 296 297 298 299 300

**问题**:Compiled with WITH_GPU, but no GPU found in runtime

**解答**:检查本机是否支持GPU训练,如果不支持请使用CPU训练。如果在docker进行GPU训练,请使用nvidia_docker启动容器。

**问题**:Inufficient GPU memory to allocation. at [/paddle/paddle/fluid/platform/gpu_info.cc:262]
  
**解答**:正确设置run.sh脚本中`CUDA_VISIBLE_DEVICES`,确保显卡剩余内存大于需要内存。