未验证 提交 b74c7ebd 编写于 作者: C cc 提交者: GitHub

[Doc] Add post training quantization and weight quantization docs (#2960)

* add post training quantization and weight quantization docs
上级 85e802fc
# 模型量化
# 模型量化-量化训练
本文主要介绍使用Paddle-Lite加载PaddlePaddle产出的量化模型,并进行推理执行。我们以MobileNetV1模型为示例,首先介绍准备量化模型,然后介绍部署执行
本文主要介绍使用Paddle-Lite加载PaddlePaddle产出的量化模型,并进行推理执行。我们以MobileNetV1模型为示例,首先说明产出量化模型,然后说明预测部署
## 准备量化模型
## 1 简介
PaddlePaddle使用量化训练和训练后量化两种方法将FP32模型量化成Int8模型,下面分别介绍两种方法如何产出量化模型
量化训练是基于大量训练数据,对训练好的预测模型进行量化。该方法使用模拟量化的思想,在训练阶段更新权重,实现减小量化误差
### 量化训练
使用条件:
* 有预训练模型
* 有较多训练数据
使用步骤:
* 产出量化模型:使用PaddlePaddle调用量化训练接口,产出量化模型
* 量化模型预测:使用PaddleLite加载量化模型进行预测推理
优点:
* 减小计算量、降低计算内存、减小模型大小
* 模型精度受量化影响小
缺点:
* 使用条件较苛刻,使用门槛稍高
建议首先使用“有校准数据训练后量化”对模型进行量化,然后使用使用量化模型进行预测。如果该量化模型的精度达不到要求,再使用“量化训练”。
## 2 产出量化模型
目前,PaddlePaddle框架的量化训练主要针对卷积层(包括二维卷积和Depthwise卷积)、和全连接层,对应算子是conv2d、depthwise_conv2d和mul,更多量化训练的原理请参考[文档](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/docs/tutorial.md#1-quantization-aware-training%E9%87%8F%E5%8C%96%E4%BB%8B%E7%BB%8D)。Paddle-Lite支持运行PaddlePaddle框架量化训练产出的模型,可以进一步加快模型在移动端的执行速度。
温馨提示:如果您是初次接触PaddlePaddle框架,建议首先学习[新人入门](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/beginners_guide/index_cn.html)[使用指南](https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/user_guides/index_cn.html)
您可以选择下载训练好的量化模型,或者使用PaddleSlim模型压缩工具训练得到量化模型。
#### 下载量化模型
### 下载量化模型
官方发布了[MobileNetV1量化模型](https://paddle-inference-dist.bj.bcebos.com/int8%2Fpretrain%2Fmobilenet_v1_quant%2Ffloat.zip),直接下载到本地。
......@@ -23,9 +40,9 @@ PaddlePaddle使用量化训练和训练后量化两种方法将FP32模型量化
wget https://paddle-inference-dist.bj.bcebos.com/int8%2Fpretrain%2Fmobilenet_v1_quant%2Ffloat.zip
```
#### 使用PaddleSlim模型压缩工具训练量化模型
### 使用PaddleSlim模型压缩工具训练量化模型
##### 安装PaddlePaddle
#### 安装PaddlePaddle
根据操作系统、安装方式、Python版本和CUDA版本,按照[官方说明](https://paddlepaddle.org.cn/start)安装PaddlePaddle。例如:
......@@ -39,7 +56,7 @@ Ubuntu 16.04.4 LTS操作系统,CPU版本安装:
pip install paddlepaddle==1.6.0 -i https://mirrors.aliyun.com/pypi/simple/
```
##### 克隆量化训练所需的代码库
#### 克隆量化训练所需的代码库
克隆[PaddlePaddle/models](https://github.com/PaddlePaddle/models)到本地,并进入models/PaddleSlim路径。
......@@ -48,12 +65,13 @@ git clone https://github.com/PaddlePaddle/models.git
cd models/PaddleSlim
```
##### 数据准备
###### 训练数据准备
#### 准备数据和模型
##### 训练数据准备
参考[models/PaddleCV/image_classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#data-preparation)中的数据准备教程,下载训练数据,并且保存到PaddleSlim/data路径下。
###### 预训练模型准备
##### 预训练模型准备
参考/models/PaddleSlim/run.sh脚本, 从[models/PaddleCV/image_classification](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification#supported-models-and-performances)下载MobileNetV1的预训练模型,并保存到PaddleSlim/pretrain路径下。
......@@ -84,8 +102,7 @@ cd models/PaddleSlim
`compress.py`中定义了执行压缩任务需要的所有模型相关的信息,这里对几个关键的步骤进行简要介绍:
###### 目标网络的定义
**目标网络的定义**
compress.py的以下代码片段定义了train program, 这里train program只有前向计算操作。
```python
out = model.net(input=image, class_dim=args.class_dim)
......@@ -103,7 +120,7 @@ val_program = fluid.default_main_program().clone()
定义完目标网络结构,需要对其初始化,并根据需要加载预训练模型。
###### 定义feed_list和fetch_list
**定义feed_list和fetch_list**
对于train program, 定义train_feed_list用于指定从train data reader中取的数据feed给哪些variable。定义train_fetch_list用于指定在训练时,需要在log中展示的结果。如果需要在训练过程中在log中打印accuracy信心,则将('acc_top1', acc_top1.name)添加到train_fetch_list中即可。
```python
train_feed_list = [('image', image.name), ('label', label.name)]
......@@ -119,7 +136,7 @@ val_feed_list = [('image', image.name), ('label', label.name)]
val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5', acc_top5.name)]
```
###### Compressor和量化配置文件
**Compressor和量化配置文件**
`compress.py`主要使用Compressor和yaml文件完成对模型的量化训练工作。Compressor类的定义如下:
```python
class Compressor(object):
......@@ -192,7 +209,7 @@ compressor:
>
> 3)**目前,Paddle-Lite仅支持运行weight量化方式使用`abs_max`且activation量化方式使用`moving_average_abs_max`或`range_abs_max`产出的量化模型**。
##### 执行int8量化训练
#### 执行量化训练
修改run.sh,即注释掉`# enable GC strategy``# for sensitivity filter pruning`之间的内容并打开`#for quantization`相关的脚本命令(所需打开注释的命令如下所示)。
......@@ -214,52 +231,9 @@ python compress.py \
* int8目录: 参数范围为int8范围且参数数据类型为int8的量化模型。
* mobile目录:参数特点与int8目录相同且兼容paddle-mobile的量化模型(目前paddle-mobile已升级为Paddle-Lite)。
### 训练后量化
下面以MobileNetV1为例,介绍使用训练后量化方法产出量化模型。关于训练后量化的原理和详细使用方法,请参考[文档](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)
> 该示例的代码放在[models/PaddleSlim/quant_low_level_api/](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim/quant_low_level_api)目录下。如果需要执行该示例,首先clone下来[models](https://github.com/PaddlePaddle/models.git),安装具有训练后量化功能的PaddlePaddle。因为目前Lite支持支持对conv2d、depthwise_conv2d和mul量化,所以修改[run_post_training_quanzation.sh](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/run_post_training_quanzation.sh) 脚本,设置is_full_quantize=False,然后执行该脚本;执行结束后,量化模型保存在`mobilenetv1_int8_model`目录下。下面介绍详细步骤。
1)**准备模型和校准数据**
安装PaddlePaddle的develop分支编译的whl包,准备已经训练好的FP32预测模型。
准备校准数据,文件结构如下。val文件夹中有100张图片,val_list.txt文件中包含图片的label。
```bash
samples_100
└──val
└──val_list.txt
```
2)**配置校准数据生成器**
MobileNetV1的输入是图片和标签,所以配置读取校准数据的sample_generator,每次返回一张图片和一个标签。详细代码在[models/PaddleSlim/reader.py](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/reader.py)
3)**调用训练后量化**
调用训练后量化的核心代码如下,详细代码在[post_training_quantization.py](https://github.com/PaddlePaddle/models/blob/develop/PaddleSlim/quant_low_level_api/post_training_quantization.py)
``` python
place = fluid.CUDAPlace(0) if args.use_gpu == "True" else fluid.CPUPlace()
exe = fluid.Executor(place)
sample_generator = reader.val(data_dir=args.data_path)
ptq = PostTrainingQuantization(
executor=exe,
sample_generator=sample_generator,
model_dir=args.model_dir,
model_filename=args.model_filename,
params_filename=args.params_filename,
batch_size=args.batch_size,
batch_nums=args.batch_nums,
algo=args.algo,
is_full_quantize=args.is_full_quantize == "True")
quantized_program = ptq.quantize()
ptq.save_quantized_model(args.save_model_path)
```
## 使用Paddle-Lite运行量化模型推理
## 3 使用Paddle-Lite运行量化模型推理
#### 使用模型优化工具对量化模型进行优化
### 使用模型优化工具对量化模型进行优化
接下来,使用原始的量化模型生成适合在移动端直接部署的模型。
......@@ -276,7 +250,7 @@ ptq.save_quantized_model(args.save_model_path)
如前所述,量化训练后,float目录下的模型参数范围为int8,但参数数据类型仍为float32类型,这样确实没有起到模型参数压缩的效果。但是,经过model\_optimize\_tool工具优化后对应的量化参数均会以int8类型重新存储达到参数压缩的效果,且模型结构也被优化(如进行了各种operator fuse操作)。
#### 在手机端准备量化模型文件
### 在手机端准备量化模型文件
使用如下命令将mobilenet_v1_quant_opt目录下的量化模型文件导入到手机端:
......@@ -284,7 +258,7 @@ ptq.save_quantized_model(args.save_model_path)
adb push mobilenet_v1_quant_opt /data/local/tmp
```
#### 使用mobilenetv1\_light\_api运行优化后的量化模型
### 使用mobilenetv1\_light\_api运行优化后的量化模型
参考[源码编译](../source_compile)配置编译环境后,在Paddle-Lite执行如下命令获取轻量级API的demo:
......@@ -316,7 +290,7 @@ Output[900]: 0.000969
```
在C++中使用Paddle-Lite API的方法请猛戳[此处](../cpp_demo),用户也可参考[mobilenetv1_light_api.cc](https://github.com/PaddlePaddle/Paddle-Lite/blob/develop/lite/demo/cxx/mobile_light/mobilenetv1_light_api.cc)的代码示例。
### FAQ
## FAQ
**问题**:Compiled with WITH_GPU, but no GPU found in runtime
......
# 模型量化-无校准数据训练后量化
本文首先简单介绍无校准数据训练后量化,然后说明产出量化模型,最好阐述量化模型预测。
## 1 简介
无校准数据训练后量化,将模型中特定OP的权重从FP32类型量化成INT8/16类型,可以减小预测模型的大小。使用该量化模型预测,首先将INT8/16类型的权重反量化成FP32类型,然后再进行预测。
使用条件:
* 有训练好的预测模型
使用步骤:
* 产出量化模型:使用PaddlePaddle调用无校准数据训练后量化接口,产出量化模型
* 量化模型预测:使用PaddleLite加载量化模型进行预测推理
优点:
* 权重量化成INT16类型,模型精度不受影响,模型大小为原始的1/2
* 权重量化成INT8类型,模型精度会受到影响,模型大小为原始的1/4
缺点:
* 暂无
## 2 产出量化模型
大家可以使用PaddlePaddle调用无校准数据训练后量化接口,得到量化模型。
### 2.1 安装PaddlePaddle
参考PaddlePaddle[官网](https://www.paddlepaddle.org.cn/install/quick),安装PaddlePaddle CPU/GPU 1.7版本。
### 2.2 准备模型
准备已经训练好的FP32预测模型,即 `save_inference_model()` 保存的模型。
### 2.3 调用无校准数据训练后量化
对于调用无校准数据训练后量化,首先给出一个例子。
```python
model_dir = path/to/fp32_model_params
save_model_dir = path/to/save_model_path
weight_quant = WeightQuantization(model_dir=model_dir)
weight_quant.quantize_weight_to_int(save_model_dir=save_model_dir,
weight_bits=8,
quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'])
```
对于调用无校准数据训练后量化,以下对api接口进行详细介绍。
```python
class WeightQuantization(model_dir, model_filename=None, params_filename=None)
```
参数说明如下:
* model_dir(str):待量化模型的路径,其中保存模型文件和权重文件。
* model_filename(str, optional):待量化模型的模型文件名,如果模型文件名不是`__model__`,则需要使用model_filename设置模型文件名。
* params_filename(str, optional):待量化模型的权重文件名,如果所有权重保存成一个文件,则需要使用params_filename设置权重文件名。
```python
WeightQuantization.quantize_weight_to_int(save_model_dir,
save_model_filename=None,
save_params_filename=None,
quantizable_op_type=['conv2d', 'mul'],
weight_bits=8,
threshold_rate=0.0)
```
参数说明如下:
* save_model_dir(str):保存量化模型的路径。
* save_model_filename(str, optional):如果save_model_filename等于None,则模型的网络结构保存到__model__文件,如果save_model_filename不等于None,则模型的网络结构保存到特定的文件。默认为None。
* save_params_filename(str, optional):如果save_params_filename等于None,则模型的参数分别保存到一系列文件中,如果save_params_filename不等于None,则模型的参数会保存到一个文件中,文件名为设置的save_params_filename。默认为None。
* quantizable_op_type(list[str]): 需要量化的op类型,默认是`['conv2d', 'mul']`,列表中的值可以是任意支持量化的op类型 `['conv2d', 'depthwise_conv2d', 'mul']`
* weight_bits(int, optional):权重量化保存的比特数,可以是8~16,一般设置为8/16。默认为8。
## 3 量化模型预测
首先,使用PaddleLite提供的模型转换工具(model_optimize_tool)将量化模型转换成移动端预测的模型,然后加载转换后的模型进行预测部署。
### 3.1 模型转换
参考[模型转换](../user_guides/model_optimize_tool)准备模型转换工具,建议从Release页面下载。
参考[模型转换](../user_guides/model_optimize_tool)使用模型转换工具。
因为该模型会将量化的权重反量化,然后实际加载并执行FP32预测模型,所以opt命令的输入参数--prefer_int8_kernel不需要设置为true,同时其他参数按照实际情况参考文档设置。
比如在安卓手机ARM端进行预测,模型转换的命令为:
```bash
./opt --model_dir=./mobilenet_v1_quant \
--optimize_out_type=naive_buffer \
--optimize_out=mobilenet_v1_quant_opt \
--valid_targets=arm
```
### 3.2 量化模型预测
和FP32模型一样,转换后的量化模型可以在Android/IOS APP中加载预测,建议参考[C++ Demo](../user_guides/cpp_demo)[Java Demo](../user_guides/java_demo)[Android/IOS Demo](../user_guides/android_ios_app_demo)
# 模型量化-有校准数据训练后量化
本文首先简单介绍有校准数据训练后量化,然后说明产出量化模型、量化模型预测,最后给出一个使用示例。
如果想快速上手,大家可以先参考使用示例,再查看详细使用方法。
## 1 简介
有校准数据训练后量化,使用少量校准数据计算量化因子,可以快速得到量化模型。使用该量化模型进行预测,可以减少计算量、降低计算内存、减小模型大小。
有校准数据训练后量化中,有两种计算量化因子的方法,非饱和量化方法和饱和量化方法。非饱和量化方法计算整个Tensor的绝对值最大值`abs_max`,将其映射为127。饱和量化方法使用KL散度计算一个合适的阈值`T` (`0<T<mab_max`),将其映射为127。一般而言,待量化Op的权重采用非饱和量化方法,待量化Op的激活(输入和输出)采用饱和量化方法 。
使用条件:
* 有训练好的预测模型
* 有少量校准数据,比如100~500张图片
使用步骤:
* 产出量化模型:使用PaddlePaddle或者PaddleSlim调用有校准数据训练后量化接口,产出量化模型
* 量化模型预测:使用PaddleLite加载量化模型进行预测推理
优点:
* 减小计算量、降低计算内存、减小模型大小
* 不需要大量训练数据
* 快速产出量化模型,简单易用
缺点:
* 对少部分的模型,尤其是计算量小、精简的模型,量化后精度可能会受到影响
## 2 产出量化模型
大家可以使用PaddlePaddle或者PaddleSlim调用有校准数据训练后量化接口,得到量化模型。本文主要介绍使用PaddlePaddle产出量化模型,使用PaddleSlim可以参考[文档](https://github.com/PaddlePaddle/models/tree/develop/PaddleSlim)
### 2.1 安装PaddlePaddle
参考PaddlePaddle[官网](https://www.paddlepaddle.org.cn/install/quick),安装PaddlePaddle CPU/GPU 1.7版本。
### 2.2 准备模型和校准数据
准备已经训练好的FP32预测模型,即 `save_inference_model()` 保存的模型。
准备校准数据集,校准数据集应该是测试集/训练集中随机挑选的一部分,量化因子才会更加准确。对常见的视觉模型,建议校准数据的数量为100~500张图片。
### 2.3 配置校准数据生成器
有校准数据训练后量化内部使用异步数据读取的方式读取校准数据,大家只需要根据模型的输入,配置读取数据的sample_generator。sample_generator是Python生成器,**必须每次返回单个样本数据**,会用作`DataLoader.set_sample_generator()`的数据源。
建议参考[异步数据读取文档](https://www.paddlepaddle.org.cn/documentation/docs/zh/user_guides/howto/prepare_data/use_py_reader.html)和本文示例,学习如何配置校准数据生成器。
### 2.4 调用有校准数据训练后量化
对于调用有校准数据训练后量化,首先给出一个例子,让大家有个直观了解。
```python
import paddle.fluid as fluid
from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
exe = fluid.Executor(fluid.CPUPlace())
model_dir = path/to/fp32_model_params
# set model_filename as None when the filename is __model__,
# otherwise set it as the real filename
model_filename = None
# set params_filename as None when all parameters were saved in
# separate files, otherwise set it as the real filename
params_filename = None
save_model_path = path/to/save_model_path
# prepare the sample generator according to the model, and the
# sample generator must return a sample every time. The reference
# document: https://www.paddlepaddle.org.cn/documentation/docs/zh
# /user_guides/howto/prepare_data/use_py_reader.html
sample_generator = your_sample_generator
batch_size = 10
batch_nums = 10
algo = "KL"
quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
ptq = PostTrainingQuantization(
executor=exe,
sample_generator=sample_generator,
model_dir=model_dir,
model_filename=model_filename,
params_filename=params_filename,
batch_size=batch_size,
batch_nums=batch_nums,
algo=algo,
quantizable_op_type=quantizable_op_type)
ptq.quantize()
ptq.save_quantized_model(save_model_path)
```
对于调用有校准数据训练后量化,以下对接口进行详细介绍。
``` python
class PostTrainingQuantization(
executor=None,
scope=None,
model_dir=None,
model_filename=None,
params_filename=None,
sample_generator=None,
batch_size=10,
batch_nums=None,
algo="KL",
quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
is_full_quantize=False,
weight_bits=8,
activation_bits=8,
is_use_cache_file=False,
cache_dir="./temp_post_training"):
```
调用上述api,传入必要的参数。参数说明如下:
* executor(fluid.Executor):执行模型的executor,可以指定在cpu或者gpu上执行。
* scope(fluid.Scope, optional):模型运行时使用的scope,默认为None,则会使用global_scope()。行首有optional,说明用户可以不设置该输入参数,直接使用默认值,下同。
* model_dir(str):待量化模型的路径,其中保存模型文件和权重文件。
* model_filename(str, optional):待量化模型的模型文件名,如果模型文件名不是`__model__`,则需要使用model_filename设置模型文件名。
* params_filename(str, optional):待量化模型的权重文件名,如果所有权重保存成一个文件,则需要使用params_filename设置权重文件名。
* sample_generator(Python Generator):配置的校准数据生成器。
* batch_size(int, optional):一次读取校准数据的数量。
* batch_nums(int, optional):读取校准数据的次数。如果设置为None,则从sample_generator中读取所有校准数据进行训练后量化;如果设置为非None,则从sample_generator中读取`batch_size*batch_nums`个校准数据。
* algo(str, optional):计算待量化激活Tensor的量化因子的方法。设置为`KL`,则使用饱和量化方法,设置为`direct`,则使用非饱和量化方法。默认为`KL`
* quantizable_op_type(list[str], optional): 需要量化的op类型,默认是`["conv2d", "depthwise_conv2d", "mul"]`,列表中的值可以是任意支持量化的op类型。
* is_full_quantize(bool, optional):是否进行全量化。设置为True,则对模型中所有支持量化的op进行量化;设置为False,则只对`quantizable_op_type` 中op类型进行量化。目前支持的量化类型如下:'conv2d', 'depthwise_conv2d', 'mul', "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose", "equal", "gather", "greater_equal", "greater_than", "less_equal", "less_than", "mean", "not_equal", "reshape", "reshape2", "bilinear_interp", "nearest_interp", "trilinear_interp", "slice", "squeeze", "elementwise_sub"。
* weight_bits(int, optional):权重量化的比特数,可以设置为1~16。PaddleLite目前仅支持加载权重量化为8bit的量化模型。
* activation_bits(int, optional): 激活量化的比特数,可以设置为1~16。PaddleLite目前仅支持加载激活量化为8bit的量化模型。
* is_use_cache_file(bool, optional):是否使用缓存文件。如果设置为True,训练后量化过程中的采样数据会保存到磁盘文件中;如果设置为False,所有采样数据会保存到内存中。当待量化的模型很大或者校准数据数量很大,建议设置is_use_cache_file为True。默认为False。
* cache_dir(str, optional):当is_use_cache_file等于True,会将采样数据保存到该文件中。量化完成后,该文件中的临时文件会自动删除。
```python
PostTrainingQuantization.quantize()
```
调用上述接口开始训练后量化。根据校准数据数量、模型的大小和量化op类型不同,训练后量化需要的时间也不一样。比如使用ImageNet2012数据集中100图片对`MobileNetV1`进行训练后量化,花费大概1分钟。
```python
PostTrainingQuantization.save_quantized_model(save_model_path)
```
调用上述接口保存训练后量化模型,其中save_model_path为保存的路径。
训练后量化支持部分量化功能:
* 方法1:设置quantizable_op_type,则只会对quantizable_op_type中的Op类型进行量化,模型中其他Op类型保持不量化。
* 方法2:构建网络的时候,将不需要量化的特定Op定义在 `skip_quant` 的name_scope中,则可以跳过特定Op的量化,示例如下。
```python
with fluid.name_scope('skip_quant'):
pool = fluid.layers.pool2d(input=hidden, pool_size=2, pool_type='avg', pool_stride=2)
# 不对pool2d进行量化
```
## 3 量化模型预测
首先,使用PaddleLite提供的模型转换工具(model_optimize_tool)将量化模型转换成移动端预测的模型,然后加载转换后的模型进行预测部署。
### 3.1 模型转换
参考[模型转换](../user_guides/model_optimize_tool)准备模型转换工具,建议从Release页面下载。
参考[模型转换](../user_guides/model_optimize_tool)使用模型转换工具。注意opt命令的输入参数--prefer_int8_kernel必须设置为true,其他参数按照实际情况参考文档设置。比如在安卓手机ARM端进行预测,模型转换的命令为:
```bash
./opt --model_dir=./mobilenet_v1_quant \
--optimize_out_type=naive_buffer \
--optimize_out=mobilenet_v1_quant_opt \
--valid_targets=arm \
--prefer_int8_kernel=true
```
### 3.2 量化模型预测
和FP32模型一样,转换后的量化模型可以在Android/IOS APP中加载预测,建议参考[C++ Demo](../user_guides/cpp_demo)[Java Demo](../user_guides/java_demo)[Android/IOS Demo](../user_guides/android_ios_app_demo)
## 4 使用示例
### 4.1 产出量化模型
参考本文 “2.1 安装PaddlePaddle” 安装PaddlePaddle。
下载[打包文件](https://paddle-inference-dist.cdn.bcebos.com/PaddleLite/quantization_demo/post_training_quantization_withdata.tgz),解压到本地。
```bash
wget https://paddle-inference-dist.cdn.bcebos.com/PaddleLite/quantization_demo/post_training_quantization_withdata.tgz
tar zxvf post_training_quantization_withdata.tgz
cd post_training_quantization_withdata
```
执行下面的命令,自动下载预测模型(mobilenetv1_fp32_model)和校准数据集,然后调用有校准数据训练后方法产出量化模型。
```bash
sh run_post_training_quanzation.sh
```
量化模型保存在mobilenetv1_int8_model文件夹中。
### 4.2 量化模型预测
下载测试文件([benchmark_bin](https://paddle-inference-dist.cdn.bcebos.com/PaddleLite/quantization_demo/benchmark_bin))或者参考[Benchmark测试方法](../benchmark/benchmark_tools)编译测试文件。
将mobilenetv1_fp32_model、mobilenetv1_int8_model和benchmark_bin文件都保存到手机上。
```bash
adb push mobilenetv1_fp32_model /data/local/tmp
adb push mobilenetv1_int8_model /data/local/tmp
chmod 777 benchmark_bin
adb push benchmark_bin /data/local/tmp
```
测试量化模型和原始模型的性能,依次执行下面命令:
```bash
./benchmark_bin --is_quantized_model=true --run_model_optimize=true --result_filename=res.txt --warmup=10 --repeats=30 --model_dir=mobilenetv1_int8_model/
./benchmark_bin --is_quantized_model=true --run_model_optimize=true --result_filename=res.txt --warmup=10 --repeats=30 --model_dir=mobilenetv1_fp32_model/
cat res.txt
```
在res.txt文件中可以看到INT8量化模型和FP32原始模型的速度。
举例来说,在骁龙855手机、单线程的情况下测试mobilenetv1,INT8量化模型的计算时间是14.52ms,FP32原始模型的计算时间是31.7ms。
......@@ -49,6 +49,8 @@ Welcome to Paddle-Lite's documentation!
advanced_user_guides/x2paddle
advanced_user_guides/x2paddle_models_doc
advanced_user_guides/post_quant_with_data
advanced_user_guides/post_quant_no_data
advanced_user_guides/model_quantization
advanced_user_guides/support_operation_list
advanced_user_guides/add_operation
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册