softmax_kernel.cpp 4.5 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

Z
zhangyang 已提交
17 18 19
#include "operators/kernel/softmax_kernel.h"
#include "operators/kernel/central-arm-func/softmax_arm_func.h"

H
hanbuhe 已提交
20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
25
  auto input = const_cast<LoDTensor *>(param->InputX());
J
jameswu2014 已提交
26 27
  auto dims = framework::vectorize(input->dims());
  half *input_ptr;
28
  auto out = param->Out();
29
  if (input->type() == type_id<float>()) {
J
jameswu2014 已提交
30 31 32 33 34
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
  } else {
    input_ptr = input->data<half>();
  }
35

H
hjchen2 已提交
36
  auto float_input = new LoDTensor;
37

38 39 40 41 42 43 44 45 46 47 48 49
  int input_n = 1, input_c = 1, input_h = 1, input_w = 1;
  if (dims.size() == 4) {
    input_h = dims[1];
    input_w = dims[2];
    input_c = dims[3];
    if (input_c == 1) {  // This input is generated by FC op, dims = [N C 1 1]
      PADDLE_MOBILE_ENFORCE(input_w == 1, "Softmax input must come from FC op");
      input_c = dims[1];
      input_h = 1;
    }
  } else if (dims.size() == 2) {
    input_c = dims[1];
50 51 52 53
  }
  input->Resize(framework::make_ddim(dims));
  float_input->Resize(framework::make_ddim(dims));

54
  if (input_c == 2 && input->type() == type_id<half>()) {  // Use FPGA
55 56 57 58 59 60 61
    fpga::format_fp16_ofm(out);
    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP16;
    args.image.address = input_ptr;
62 63 64
    args.image.height = input_h;
    args.image.width = input_w;
    args.image.channels = input_c;
65 66 67 68 69
    args.output.address = out->data<half>();
    args.output.scale_address = out->scale;
    args.output.activation.activation_type = fpga::SOFTMAX;
    param->SetFpgaArgs(args);
  } else {  // Use CPU
J
jameswu2014 已提交
70 71
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
72
    float_input->init(type_id<float>().hash_code());
J
jameswu2014 已提交
73
    float_input->mutable_data<float>(framework::make_ddim(dims));
74 75
    fpga::format_fp32_ofm(float_input);
    fpga::format_fp32_ofm(out);
76 77 78 79 80 81 82

    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP32;
    args.image.address = input_ptr;
83 84 85
    args.image.height = input_h;
    args.image.width = input_w;
    args.image.channels = input_c;
86 87 88 89
    args.output.address = float_input->data<float>();
    args.output.scale_address = float_input->scale;
    param->SetFloatInput(float_input);
    param->SetFpgaArgs(args);
90
  }
qnqinan's avatar
qnqinan 已提交
91

H
hanbuhe 已提交
92 93 94 95
  return true;
}

template <>
96
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
J
jameswu2014 已提交
97
  auto *in_x = (param.InputX());
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  auto dims = in_x->dims();
  auto n = 1;
  auto h = 1;
  auto w = 1;
  auto c = 1;
  if (dims.size() == 4) {
    h = dims[1];
    w = dims[2];
    c = dims[3];
    if (c == 1) {  // This input is generated by FC op, dims = [N C 1 1]
      PADDLE_MOBILE_ENFORCE(w == 1, "Softmax input must come from FC op");
      c = dims[1];
      h = 1;
    }
  } else if (dims.size() == 2) {
    c = dims[1];
  }
115
  if (in_x->type() == type_id<half>()) {
J
jameswu2014 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128
    fpga::PerformBypass(param.FpgaArgs());
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
      Tensor *in_x2 = param.FloatInput();

      fpga::fpga_invalidate(in_x2->data<float>(),
                            in_x2->numel() * sizeof(float));
      math::SoftmaxFuntor<CPU, float>()(in_x2, out);
      fpga::fpga_flush(out->data<float>(), out->memory_size());
    }
  } else {
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
129
      out->Resize({n, h, w, c});
J
jameswu2014 已提交
130 131
      math::SoftmaxFuntor<CPU, float>()(in_x, out);
    }
132
  }
H
hanbuhe 已提交
133 134 135 136 137 138
}

}  // namespace operators
}  // namespace paddle_mobile

#endif