softmax_kernel.cpp 4.2 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

Z
zhangyang 已提交
17 18 19
#include "operators/kernel/softmax_kernel.h"
#include "operators/kernel/central-arm-func/softmax_arm_func.h"

H
hanbuhe 已提交
20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
25
  auto input = const_cast<LoDTensor *>(param->InputX());
J
jameswu2014 已提交
26 27
  auto dims = framework::vectorize(input->dims());
  half *input_ptr;
28
  auto out = param->Out();
29
  if (input->type() == type_id<float>()) {
J
jameswu2014 已提交
30 31 32 33 34
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
  } else {
    input_ptr = input->data<half>();
  }
35

H
hjchen2 已提交
36
  auto float_input = new LoDTensor;
37 38 39

  PADDLE_MOBILE_ENFORCE(input->dims().size() == 4,
                        "Softmax should have 4-order input");
J
jameswu2014 已提交
40

41 42 43 44 45 46 47 48 49 50
  auto channel = dims[3];
  if (channel == 1) {  // This input is generated by FC op, dims = [N C 1 1]
    PADDLE_MOBILE_ENFORCE(dims[2] == 1, "Softmax input must come from FC op");
    dims[3] = dims[1];
    dims[1] = 1;
  }
  input->Resize(framework::make_ddim(dims));
  float_input->Resize(framework::make_ddim(dims));

  if (channel != 2) {  // Use CPU
J
jameswu2014 已提交
51 52
    out->Resize(framework::make_ddim(dims));
    out->mutable_data<float>(framework::make_ddim(dims));
53
    float_input->init(type_id<float>().hash_code());
J
jameswu2014 已提交
54 55 56
    float_input->mutable_data<float>(framework::make_ddim(dims));
    //  fpga::format_fp32_ofm(float_input);
    // fpga::format_fp32_ofm(out);
57 58 59 60 61 62 63

    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP32;
    args.image.address = input_ptr;
J
jameswu2014 已提交
64
    args.image.height = (uint32_t)dims[1] * dims[0];
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    args.image.width = (uint32_t)dims[2];
    args.image.channels = (uint32_t)dims[3];
    args.output.address = float_input->data<float>();
    args.output.scale_address = float_input->scale;
    param->SetFloatInput(float_input);
    param->SetFpgaArgs(args);
  } else {  // Use FPGA
    fpga::format_fp16_ofm(out);
    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP16;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)input->dims()[1];
    args.image.width = (uint32_t)input->dims()[2];
    args.image.channels = (uint32_t)input->dims()[3];
    args.output.address = out->data<half>();
    args.output.scale_address = out->scale;
    args.output.activation.activation_type = fpga::SOFTMAX;
    param->SetFpgaArgs(args);
86
  }
qnqinan's avatar
qnqinan 已提交
87

H
hanbuhe 已提交
88 89 90 91
  return true;
}

template <>
92
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
J
jameswu2014 已提交
93
  auto *in_x = (param.InputX());
94
  if (in_x->type() == type_id<half>()) {
J
jameswu2014 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    fpga::PerformBypass(param.FpgaArgs());
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
      Tensor *in_x2 = param.FloatInput();

      fpga::fpga_invalidate(in_x2->data<float>(),
                            in_x2->numel() * sizeof(float));
      math::SoftmaxFuntor<CPU, float>()(in_x2, out);
      fpga::fpga_flush(out->data<float>(), out->memory_size());
    }
  } else {
    if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
      Tensor *out = param.Out();
J
jameswu2014 已提交
108 109
      out->Resize(
          {in_x->dims()[0], out->dims()[1], out->dims()[2], out->dims()[3]});
J
jameswu2014 已提交
110 111
      math::SoftmaxFuntor<CPU, float>()(in_x, out);
    }
112
  }
H
hanbuhe 已提交
113 114 115 116 117 118
}

}  // namespace operators
}  // namespace paddle_mobile

#endif