batchnorm_arm_func.h 10.2 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17 18
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef BATCHNORM_OP

#pragma once

D
dolphin8 已提交
19
#include <cmath>
L
liuruilong 已提交
20 21 22 23 24
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

L
liuruilong 已提交
25
template <typename P>
L
liuruilong 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
void BatchnormCompute(const BatchNormParam &param) {
  const Tensor *input_x = param.InputX();
  auto input_x_ptr = input_x->data<float>();
  const auto &x_dims = input_x->dims();
  const int N = x_dims[0];
  const int C = x_dims[1];
  const int H = x_dims[2];
  const int W = x_dims[3];
  const int stride0 = C * H * W;
  const int stride1 = H * W;
  const int stride2 = W;
  Tensor *out = param.OutputY();
  auto out_ptr = out->mutable_data<float>();
  const float epsilon = param.Epsilon();
  const Tensor *mean = param.InputMean();
  const Tensor *variance = param.InputVariance();
  const Tensor *scale = param.InputScale();
  const Tensor *bias = param.InputBias();
  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  //  Tensor inv_std;
  //  auto inv_std_ptr = inv_std.mutable_data<float>(make_ddim({C}));

  PADDLE_MOBILE_ENFORCE(C == variance->numel(),
                        "C must equal to variance.numel()");

  int HXW = H * W;
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#if __ARM_NEON
#if __aarch64__
  float *inv_std_ptr = new float[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }

  Tensor new_scale;
  auto new_scale_ptr = new_scale.mutable_data<float>(framework::make_ddim({C}));
  Tensor new_bias;
  auto new_bias_ptr = new_bias.mutable_data<float>(framework::make_ddim({C}));

  /// ((x - est_mean) * (inv_var) * scale + bias equal to
  /// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
    {
      for (int n = 0; n < N; n++) {
        for (int h = 0; h < H; h++) {
          int tmp_index = n * stride0 + i * stride1 + h * stride2;
          for (int w = 0; w < W; w++) {
            int index = tmp_index + w;
            out_ptr[index] =
                input_x_ptr[index] * new_scale_ptr[i] + new_bias_ptr[i];
          }
        }
      }
    }
  }
  delete[] inv_std_ptr;
#else

L
liuruilong 已提交
91 92 93 94 95 96 97 98 99 100 101
  if (HXW > 32) {
    int NXC = N * C;
    float *inv_std_ptr = new float[NXC * 4];
    float *volatile new_scale_ptr = new float[NXC * 4];
    float *volatile new_bias_ptr = new float[NXC * 4];

    /// std = (var + epsilon).sqrt();
    /// inv_std = 1 / std;
    for (int i = 0; i < C * 4; i += 4) {
      int index = i / 4;
      inv_std_ptr[i] =
L
liuruilong 已提交
102
          1 / static_cast<float>(pow((variance_ptr[index] + epsilon), 0.5));
L
liuruilong 已提交
103 104 105 106 107 108 109 110 111 112
      inv_std_ptr[i + 1] = inv_std_ptr[i];
      inv_std_ptr[i + 2] = inv_std_ptr[i];
      inv_std_ptr[i + 3] = inv_std_ptr[i];

      new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[index];
      new_scale_ptr[i + 1] = new_scale_ptr[i];
      new_scale_ptr[i + 2] = new_scale_ptr[i];
      new_scale_ptr[i + 3] = new_scale_ptr[i];

      new_bias_ptr[i] =
L
liuruilong 已提交
113
          bias_ptr[index] - mean_ptr[index] * inv_std_ptr[i] * scale_ptr[index];
L
liuruilong 已提交
114 115 116 117 118 119 120 121 122 123 124 125

      new_bias_ptr[i + 1] = new_bias_ptr[i];
      new_bias_ptr[i + 2] = new_bias_ptr[i];
      new_bias_ptr[i + 3] = new_bias_ptr[i];
    }

    for (int j = C * 4; j < NXC * 4; ++j) {
      new_scale_ptr[j] = new_scale_ptr[j - C * 4];
      new_bias_ptr[j] = new_bias_ptr[j - C * 4];
    }

    asm volatile(
L
liuruilong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        "subs %[N], %[N], #1                  \n\t"
        "blt        end_n_%=                  \n\t"
        "loop_n_%=:                           \n\t"

        "subs %[C], %[C], #1                   \n\t"
        "blt        end_c_%=                  \n\t"
        "loop_c_%=:                           \n\t"

        "vld1.32 {q9}, [%[new_scale_ptr]]!    \n\t"
        "vld1.32 {q10}, [%[new_bias_ptr]]!    \n\t"

        "mov r6, %[HXW]       \n\t"

        "subs r6, r6, #32                       \n\t"
        "blt        end_hw_%=                   \n\t"
        "loop_hw_%=:                            \n\t"

        "vld1.32 {q1, q2}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q3, q4}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q5, q6}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q7, q8}, [%[input_x_ptr]]!    \n\t"

        "vmul.f32   q1, q1,   q9  \n\t"
        "vmul.f32   q2, q2,   q9  \n\t"
        "vmul.f32   q3, q3,   q9  \n\t"
        "vmul.f32   q4, q4,   q9  \n\t"

        "vmul.f32   q5, q5,   q9  \n\t"
        "vmul.f32   q6, q6,   q9  \n\t"
        "vmul.f32   q7, q7,   q9  \n\t"
        "vmul.f32   q8, q8,   q9  \n\t"

        "vadd.f32   q1,  q1,  q10 \n\t"
        "vadd.f32   q2, q2,   q10  \n\t"
        "vadd.f32   q3, q3,   q10  \n\t"
        "vadd.f32   q4,  q4,  q10 \n\t"
        "vadd.f32   q5,  q5,  q10 \n\t"
        "vadd.f32   q6,  q6,  q10 \n\t"
        "vadd.f32   q7,  q7,  q10 \n\t"
        "vadd.f32   q8,  q8,  q10 \n\t"

        "vst1.32 {q1, q2}, [%[out_ptr]]!        \n\t"
        "vst1.32 {q3, q4}, [%[out_ptr]]!       \n\t"
        "vst1.32 {q5, q6}, [%[out_ptr]]!       \n\t"
        "vst1.32 {q7, q8}, [%[out_ptr]]!       \n\t"

        "subs r6, r6, #32                    \n\t"
        "bge        loop_hw_%=                \n\t"
        "end_hw_%=:                           \n\t"

        "cmp  r6, #0                                \n\t"
        "bge  end_remainder_%=                      \n\t"
        "mov r5, #4                             \n\t"
        "mul  r6, r6, r5                            \n\t"
        "add %[input_x_ptr], %[input_x_ptr], r6     \n\t"

        "vld1.32 {q1, q2}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q3, q4}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q5, q6}, [%[input_x_ptr]]!    \n\t"
        "vld1.32 {q7, q8}, [%[input_x_ptr]]!    \n\t"

        "vmul.f32   q1, q1,   q9  \n\t"
        "vmul.f32   q2, q2,   q9  \n\t"
        "vmul.f32   q3, q3,   q9  \n\t"
        "vmul.f32   q4, q4,   q9  \n\t"
        "vmul.f32   q5, q5,   q9  \n\t"
        "vmul.f32   q6, q6,   q9  \n\t"
        "vmul.f32   q7, q7,   q9  \n\t"
        "vmul.f32   q8, q8,   q9  \n\t"
        "vadd.f32   q1,  q1,  q10 \n\t"
        "vadd.f32   q2, q2,   q10  \n\t"
        "vadd.f32   q3, q3,   q10  \n\t"
        "vadd.f32   q4,  q4,  q10 \n\t"
        "vadd.f32   q5,  q5,  q10 \n\t"
        "vadd.f32   q6,  q6,  q10 \n\t"
        "vadd.f32   q7,  q7,  q10 \n\t"
        "vadd.f32   q8,  q8,  q10 \n\t"

        "add %[out_ptr], %[out_ptr], r6         \n\t"
        "vst1.32 {q1, q2}, [%[out_ptr]]!        \n\t"
        "vst1.32 {q3, q4}, [%[out_ptr]]!        \n\t"
        "vst1.32 {q5, q6}, [%[out_ptr]]!        \n\t"
        "vst1.32 {q7, q8}, [%[out_ptr]]!        \n\t"

        "end_remainder_%=:                      \n\t"

        "subs %[C], %[C], #1                    \n\t"
        "bge        loop_c_%=                   \n\t"
        "end_c_%=:                              \n\t"

        "subs %[N], %[N], #1                    \n\t"
        "bge        loop_n_%=                   \n\t"
        "end_n_%=:                              \n\t"
        :
        : [input_x_ptr] "r"(input_x_ptr), [out_ptr] "r"(out_ptr),
          [new_scale_ptr] "r"(new_scale_ptr), [new_bias_ptr] "r"(new_bias_ptr),
          [N] "r"(N), [C] "r"(C), [HXW] "r"(HXW)
        : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9",
          "q10", "r5", "r6");
L
liuruilong 已提交
225 226 227 228 229 230 231 232 233

    delete[] inv_std_ptr;
    delete[] new_scale_ptr;
    delete[] new_bias_ptr;

  } else {
    float *inv_std_ptr = new float[C];
    for (int i = 0; i < C; i++) {
      inv_std_ptr[i] =
L
liuruilong 已提交
234
          1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
L
liuruilong 已提交
235 236 237
    }

    Tensor new_scale;
L
liuruilong 已提交
238 239
    auto new_scale_ptr =
        new_scale.mutable_data<float>(framework::make_ddim({C}));
L
liuruilong 已提交
240 241 242 243 244 245 246 247
    Tensor new_bias;
    auto new_bias_ptr = new_bias.mutable_data<float>(framework::make_ddim({C}));

    /// ((x - est_mean) * (inv_var) * scale + bias equal to
    /// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
    for (int i = 0; i < C; i++) {
      new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
      new_bias_ptr[i] =
L
liuruilong 已提交
248
          bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
L
liuruilong 已提交
249 250 251 252 253 254 255
      {
        for (int n = 0; n < N; n++) {
          for (int h = 0; h < H; h++) {
            int tmp_index = n * stride0 + i * stride1 + h * stride2;
            for (int w = 0; w < W; w++) {
              int index = tmp_index + w;
              out_ptr[index] =
L
liuruilong 已提交
256
                  input_x_ptr[index] * new_scale_ptr[i] + new_bias_ptr[i];
L
liuruilong 已提交
257 258 259 260 261 262 263 264
            }
          }
        }
      }
    }

    delete[] inv_std_ptr;
  }
265
#endif
L
liuruilong 已提交
266
#else
267
  float *inv_std_ptr = new float[C];
L
liuruilong 已提交
268 269 270 271
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
272

L
liuruilong 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
  Tensor new_scale;
  auto new_scale_ptr = new_scale.mutable_data<float>(framework::make_ddim({C}));
  Tensor new_bias;
  auto new_bias_ptr = new_bias.mutable_data<float>(framework::make_ddim({C}));

  /// ((x - est_mean) * (inv_var) * scale + bias equal to
  /// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
    {
      for (int n = 0; n < N; n++) {
        for (int h = 0; h < H; h++) {
          int tmp_index = n * stride0 + i * stride1 + h * stride2;
          for (int w = 0; w < W; w++) {
            int index = tmp_index + w;
            out_ptr[index] =
                input_x_ptr[index] * new_scale_ptr[i] + new_bias_ptr[i];
291 292 293 294
          }
        }
      }
    }
L
liuruilong 已提交
295 296
  }
  delete[] inv_std_ptr;
L
liuruilong 已提交
297
#endif
L
liuruilong 已提交
298 299
}

L
liuruilong 已提交
300 301
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
302 303

#endif