sgemm_c4_compute_test.cc 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
23
#include "lite/core/profile/timer.h"
24 25 26 27
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"

typedef paddle::lite::Tensor Tensor;
28
using paddle::lite::profile::Timer;
29 30 31 32 33 34 35 36 37 38 39

DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
40
DEFINE_bool(basic_test, true, "do all tests");
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "gemm_c4: M");
DEFINE_int32(N, 512, "gemm_c4: N");
DEFINE_int32(K, 512, "gemm_c4: K");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

bool test_sgemm_c4(
    int m, int n, int k, bool has_bias, bool has_relu, int cls, int ths) {
  int m_round = (m + 3) / 4 * 4;
  int k_round = (k + 3) / 4 * 4;
  int size_a = m * k;
  int size_b = n * k;
  int size_a_c4 = m_round * k_round;
  int size_b_c4 = k_round * n;

  Tensor ta;
  Tensor tb;
  Tensor ta_c4;
  Tensor tb_c4;
  Tensor tc;
  Tensor tc_basic;
  Tensor tc_backup;
  Tensor tbias;

  ta.Resize({size_a});
  tb.Resize({size_b});
  ta_c4.Resize({size_a_c4});
  tb_c4.Resize({size_b_c4});
  tc.Resize({m_round * n});
  tc_basic.Resize({m_round * n});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kFloat));
  tb.set_precision(PRECISION(kFloat));
  ta_c4.set_precision(PRECISION(kFloat));
  tb_c4.set_precision(PRECISION(kFloat));
  tc.set_precision(PRECISION(kFloat));
  tc_basic.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -1.f, 1.f);
  fill_tensor_rand(tb, -1.f, 1.f);
  fill_tensor_rand(tbias, -1.f, 1.f);
  fill_tensor_rand(tc, -1.f, 1.f);

  auto da = ta.mutable_data<float>();
  auto db = tb.mutable_data<float>();
  auto da_c4 = ta_c4.mutable_data<float>();
  auto db_c4 = tb_c4.mutable_data<float>();
  auto dc_basic = tc_basic.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();
95
  memset(reinterpret_cast<char*>(dc_basic), 0, tc_basic.numel());
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

  // trans A, B to c4
  basic_trans_mat_to_c4(da, da_c4, k, m, k, true);
  basic_trans_mat_to_c4(db, db_c4, n, k, n, false);

  LOG(INFO) << "sgemm_c4 M: " << m << ", N: " << n << ", K: " << k
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");

  if (FLAGS_check_result) {
    basic_gemm_c4(false,
                  false,
                  m,
                  n,
                  k,
                  1.f,
                  da,
                  k,
                  db,
                  n,
                  0.f,
                  dc_basic,
                  n,
                  dbias,
                  has_bias,
                  has_relu);
  }
  Timer t0;
#ifdef LITE_WITH_ARM
  //! compute
  double ops = 2.0 * m_round * n * k_round;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  auto dc = tc.mutable_data<float>();
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::sgemm_prepack_c4(
        m, n, k, da_c4, db_c4, dc, dbias, has_bias, has_relu, &ctx);
  }

  for (int i = 0; i < FLAGS_repeats; ++i) {
138
    t0.Start();
139 140
    paddle::lite::arm::math::sgemm_prepack_c4(
        m, n, k, da_c4, db_c4, dc, dbias, has_bias, has_relu, &ctx);
141
    t0.Stop();
142 143 144 145
  }
  LOG(INFO) << "M: " << m << ", N: " << n << ", K: " << k
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
146 147 148 149
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    tensor_cmp_host(tc_basic, tc, max_ratio, max_diff);
    LOG(INFO) << "compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc.dims());
      tensor_diff(tc_basic, tc, tdiff);
      LOG(INFO) << "a: ";
      print_tensor(ta);
      LOG(INFO) << "a_c4: ";
      print_tensor(ta_c4);
      LOG(INFO) << "b: ";
      print_tensor(tb);
      LOG(INFO) << "b_c4: ";
      print_tensor(tb_c4);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic);
      LOG(INFO) << "lite result: ";
      print_tensor(tc);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
  }
#endif
  return true;
}
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
bool test_sgemm_c8(
    int m, int n, int k, bool has_bias, bool has_relu, int cls, int ths) {
  int m_round = (m + 7) / 8 * 8;
  int k_round = (k + 7) / 8 * 8;
  int size_a = m * k;
  int size_b = n * k;
  int size_a_c4 = m_round * k_round;
  int size_b_c8 = k_round * n;

  Tensor ta;
  Tensor tb;
  Tensor ta_c4;
  Tensor tb_c8;
  Tensor tc;
  Tensor tc_basic;
  Tensor tc_backup;
  Tensor tbias;

  ta.Resize({size_a});
  tb.Resize({size_b});
  ta_c4.Resize({size_a_c4});
  tb_c8.Resize({size_b_c8});
  tc.Resize({m_round * n});
  tc_basic.Resize({m_round * n});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kInt16));
  tb.set_precision(PRECISION(kInt16));
  ta_c4.set_precision(PRECISION(kInt16));
  tb_c8.set_precision(PRECISION(kInt16));
  tc.set_precision(PRECISION(kInt32));
  tc_basic.set_precision(PRECISION(kInt32));
  tbias.set_precision(PRECISION(kInt32));

  fill_tensor_rand(ta);
  fill_tensor_rand(tb);
  fill_tensor_rand(tbias);
  fill_tensor_rand(tc);

  auto da = ta.mutable_data<int16_t>();
  auto db = tb.mutable_data<int16_t>();
  auto da_c4 = ta_c4.mutable_data<int16_t>();
  auto db_c8 = tb_c8.mutable_data<int16_t>();
  auto dc_basic = tc_basic.mutable_data<int32_t>();
  auto dbias = tbias.mutable_data<int32_t>();

  // trans A, B to c4
  basic_trans_mat_to_c8(da, da_c4, k, m, k, true);
  basic_trans_mat_to_c8(db, db_c8, n, k, n, false);

  LOG(INFO) << "sgemm_c8 M: " << m << ", N: " << n << ", K: " << k
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");

  if (FLAGS_check_result) {
    basic_gemm_c8(false,
                  false,
                  m,
                  n,
                  k,
                  1,
                  da,
                  k,
                  db,
                  n,
                  0,
                  dc_basic,
                  n,
                  dbias,
                  false,
                  false);
  }
  Timer t0;
  LOG(INFO) << "basic test end";
#ifdef LITE_WITH_ARM
  //! compute
  double ops = 2.0 * m_round * n * k_round;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  auto dc = tc.mutable_data<int32_t>();
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::sgemm_prepack_c8_int16_small(
        m, n, k, da_c4, db_c8, dc, &ctx);
  }
  LOG(INFO) << "basic test end";

  for (int i = 0; i < FLAGS_repeats; ++i) {
    t0.Start();
    paddle::lite::arm::math::sgemm_prepack_c8_int16_small(
        m, n, k, da_c4, db_c8, dc, &ctx);
    t0.Stop();
  }
  LOG(INFO) << "basic test end";
  LOG(INFO) << "M: " << m << ", N: " << n << ", K: " << k
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
            << " GOPS, avg time: " << t0.LapTimes().Avg()
            << " ms, min time: " << t0.LapTimes().Min()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.LapTimes().Avg()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.LapTimes().Min()
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    tensor_cmp_host(tc_basic, tc, max_ratio, max_diff);
    LOG(INFO) << "compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kInt32));
      tdiff.Resize(tc.dims());
      tensor_diff(tc_basic, tc, tdiff);
      LOG(INFO) << "a: ";
      print_tensor(ta);
      LOG(INFO) << "a_c8: ";
      print_tensor(ta_c4);
      LOG(INFO) << "b: ";
      print_tensor(tb);
      LOG(INFO) << "b_c8: ";
      print_tensor(tb_c8);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic);
      LOG(INFO) << "lite result: ";
      print_tensor(tc);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
  }
#endif
  return true;
}
318 319 320 321 322 323 324

TEST(TestSgemmC4, test_func_sgemm_c4_prepacked) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm_c4 test";
325 326 327 328 329
    for (auto& m : {1, 3, 8, 32, 397, 32, 64, 77}) {
      for (auto& n : {1, 2, 3, 4, 13, 141, 789, 1}) {
        for (auto& k : {1, 3, 8, 59, 234, 19}) {
          for (auto& has_bias : {false}) {
            for (auto& has_relu : {false}) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
              for (auto& th : {1, 2, 4}) {
                auto flag = test_sgemm_c4(
                    m, n, k, has_bias, has_relu, FLAGS_power_mode, th);
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", n=" << n << ", k=" << k
                            << ", bias: " << (has_bias ? "true" : "false")
                            << ", relu: " << (has_relu ? "true" : "false")
                            << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", n=" << n << ", k=" << k
                             << ", bias: " << (has_bias ? "true" : "false")
                             << ", relu: " << (has_relu ? "true" : "false")
                             << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
TEST(TestSgemmC8, test_func_sgemm_c8_prepacked) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm_c4 test";
    for (auto& m : {1, 3, 8, 32, 397, 32, 64, 77}) {
      for (auto& n : {1, 2, 3, 4, 13, 141, 789, 1}) {
        for (auto& k : {1, 3, 8, 59, 234, 19}) {
          for (auto& has_bias : {false}) {
            for (auto& has_relu : {false}) {
              for (auto& th : {1}) {
                auto flag = test_sgemm_c8(
                    m, n, k, has_bias, has_relu, FLAGS_power_mode, th);
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", n=" << n << ", k=" << k
                            << ", bias: " << (has_bias ? "true" : "false")
                            << ", relu: " << (has_relu ? "true" : "false")
                            << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", n=" << n << ", k=" << k
                             << ", bias: " << (has_bias ? "true" : "false")
                             << ", relu: " << (has_relu ? "true" : "false")
                             << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}
385

386
TEST(TestSgemmCnCustom, test_func_sgemm_cn_prepacked_custom) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_sgemm_c4(FLAGS_M,
                            FLAGS_N,
                            FLAGS_K,
                            FLAGS_flag_bias,
                            FLAGS_flag_relu,
                            FLAGS_power_mode,
                            FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", k=" << FLAGS_K << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
402 403 404 405 406 407 408 409 410 411 412 413
  flag = test_sgemm_c8(FLAGS_M,
                       FLAGS_N,
                       FLAGS_K,
                       FLAGS_flag_bias,
                       FLAGS_flag_relu,
                       FLAGS_power_mode,
                       FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", k=" << FLAGS_K << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
414 415 416 417
  LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N << ", k=" << FLAGS_K
            << ", bias: " << FLAGS_flag_bias << ", relu: " << FLAGS_flag_relu
            << " passed!!";
}