sgemm_c4_compute_test.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/tests/utils/fill_data.h"
#include "lite/tests/utils/naive_math_impl.h"
#ifdef LITE_WITH_ARM
#include "lite/backends/arm/math/funcs.h"
#endif  // LITE_WITH_ARM
#include "lite/core/context.h"
#include "lite/core/tensor.h"
#include "lite/tests/utils/tensor_utils.h"
#include "lite/tests/utils/timer.h"

typedef paddle::lite::Tensor Tensor;
using paddle::lite::Timer;

DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
DEFINE_bool(basic_test, false, "do all tests");
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(M, 512, "gemm_c4: M");
DEFINE_int32(N, 512, "gemm_c4: N");
DEFINE_int32(K, 512, "gemm_c4: K");

DEFINE_bool(flag_relu, false, "do relu");
DEFINE_bool(flag_bias, false, "with bias");

bool test_sgemm_c4(
    int m, int n, int k, bool has_bias, bool has_relu, int cls, int ths) {
  int m_round = (m + 3) / 4 * 4;
  int k_round = (k + 3) / 4 * 4;
  int size_a = m * k;
  int size_b = n * k;
  int size_a_c4 = m_round * k_round;
  int size_b_c4 = k_round * n;

  Tensor ta;
  Tensor tb;
  Tensor ta_c4;
  Tensor tb_c4;
  Tensor tc;
  Tensor tc_basic;
  Tensor tc_backup;
  Tensor tbias;

  ta.Resize({size_a});
  tb.Resize({size_b});
  ta_c4.Resize({size_a_c4});
  tb_c4.Resize({size_b_c4});
  tc.Resize({m_round * n});
  tc_basic.Resize({m_round * n});
  tbias.Resize({m});

  ta.set_precision(PRECISION(kFloat));
  tb.set_precision(PRECISION(kFloat));
  ta_c4.set_precision(PRECISION(kFloat));
  tb_c4.set_precision(PRECISION(kFloat));
  tc.set_precision(PRECISION(kFloat));
  tc_basic.set_precision(PRECISION(kFloat));
  tbias.set_precision(PRECISION(kFloat));

  fill_tensor_rand(ta, -1.f, 1.f);
  fill_tensor_rand(tb, -1.f, 1.f);
  fill_tensor_rand(tbias, -1.f, 1.f);
  fill_tensor_rand(tc, -1.f, 1.f);

  auto da = ta.mutable_data<float>();
  auto db = tb.mutable_data<float>();
  auto da_c4 = ta_c4.mutable_data<float>();
  auto db_c4 = tb_c4.mutable_data<float>();
  auto dc_basic = tc_basic.mutable_data<float>();
  auto dbias = tbias.mutable_data<float>();

  // trans A, B to c4
  basic_trans_mat_to_c4(da, da_c4, k, m, k, true);
  basic_trans_mat_to_c4(db, db_c4, n, k, n, false);

  LOG(INFO) << "sgemm_c4 M: " << m << ", N: " << n << ", K: " << k
            << ", relu: " << (has_relu ? "true" : "false")
            << ", bias: " << (has_bias ? "true" : "false");

  if (FLAGS_check_result) {
    basic_gemm_c4(false,
                  false,
                  m,
                  n,
                  k,
                  1.f,
                  da,
                  k,
                  db,
                  n,
                  0.f,
                  dc_basic,
                  n,
                  dbias,
                  has_bias,
                  has_relu);
  }
  Timer t0;
#ifdef LITE_WITH_ARM
  //! compute
  double ops = 2.0 * m_round * n * k_round;
  std::unique_ptr<paddle::lite::KernelContext> ctx1(
      new paddle::lite::KernelContext);
  auto& ctx = ctx1->As<paddle::lite::ARMContext>();
  ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), ths);
  auto dc = tc.mutable_data<float>();
  for (int j = 0; j < FLAGS_warmup; ++j) {
    paddle::lite::arm::math::sgemm_prepack_c4(
        m, n, k, da_c4, db_c4, dc, dbias, has_bias, has_relu, &ctx);
  }

  for (int i = 0; i < FLAGS_repeats; ++i) {
    t0.start();
    paddle::lite::arm::math::sgemm_prepack_c4(
        m, n, k, da_c4, db_c4, dc, dbias, has_bias, has_relu, &ctx);
    t0.end();
  }
  LOG(INFO) << "M: " << m << ", N: " << n << ", K: " << k
            << ", power_mode: " << cls << ", threads: " << ths
            << ", GOPS: " << ops * 1e-9f
            << " GOPS, avg time: " << t0.get_average_ms()
            << " ms, min time: " << t0.get_min_time()
            << " ms, mean GOPs: " << ops * 1e-6f / t0.get_average_ms()
            << " GOPs, max GOPs: " << ops * 1e-6f / t0.get_min_time()
            << " GOPs";

  if (FLAGS_check_result) {
    double max_ratio = 0;
    double max_diff = 0;
    tensor_cmp_host(tc_basic, tc, max_ratio, max_diff);
    LOG(INFO) << "compare result, max diff: " << max_diff
              << ", max ratio: " << max_ratio;
    if (std::abs(max_ratio) > 1e-4f && std::abs(max_diff) > 5e-5f) {
      Tensor tdiff;
      tdiff.set_precision(PRECISION(kFloat));
      tdiff.Resize(tc.dims());
      tensor_diff(tc_basic, tc, tdiff);
      LOG(INFO) << "a: ";
      print_tensor(ta);
      LOG(INFO) << "a_c4: ";
      print_tensor(ta_c4);
      LOG(INFO) << "b: ";
      print_tensor(tb);
      LOG(INFO) << "b_c4: ";
      print_tensor(tb_c4);
      LOG(INFO) << "basic result: ";
      print_tensor(tc_basic);
      LOG(INFO) << "lite result: ";
      print_tensor(tc);
      LOG(INFO) << "diff result: ";
      print_tensor(tdiff);
      return false;
    }
  }
#endif
  return true;
}

TEST(TestSgemmC4, test_func_sgemm_c4_prepacked) {
  if (FLAGS_basic_test) {
#ifdef LITE_WITH_ARM
    paddle::lite::DeviceInfo::Init();
#endif
    LOG(INFO) << "run basic sgemm_c4 test";
    for (auto& m : {1, 3, 8, 32, 397}) {
      for (auto& n : {1, 2, 3, 4, 13, 141, 789}) {
        for (auto& k : {1, 3, 8, 59, 234}) {
          for (auto& has_bias : {false, true}) {
            for (auto& has_relu : {false, true}) {
              for (auto& th : {1, 2, 4}) {
                auto flag = test_sgemm_c4(
                    m, n, k, has_bias, has_relu, FLAGS_power_mode, th);
                if (flag) {
                  LOG(INFO) << "test m = " << m << ", n=" << n << ", k=" << k
                            << ", bias: " << (has_bias ? "true" : "false")
                            << ", relu: " << (has_relu ? "true" : "false")
                            << " passed\n";
                } else {
                  LOG(FATAL) << "test m = " << m << ", n=" << n << ", k=" << k
                             << ", bias: " << (has_bias ? "true" : "false")
                             << ", relu: " << (has_relu ? "true" : "false")
                             << " failed\n";
                }
              }
            }
          }
        }
      }
    }
  }
}

TEST(TestSgemmC4Custom, test_func_sgemm_c4_prepacked_custom) {
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  auto flag = test_sgemm_c4(FLAGS_M,
                            FLAGS_N,
                            FLAGS_K,
                            FLAGS_flag_bias,
                            FLAGS_flag_relu,
                            FLAGS_power_mode,
                            FLAGS_threads);
  if (!flag) {
    LOG(FATAL) << "test m = " << FLAGS_M << ", n=" << FLAGS_N
               << ", k=" << FLAGS_K << ", bias: " << FLAGS_flag_bias
               << ", relu: " << FLAGS_flag_relu << " failed!!";
  }
  LOG(INFO) << "test m = " << FLAGS_M << ", n=" << FLAGS_N << ", k=" << FLAGS_K
            << ", bias: " << FLAGS_flag_bias << ", relu: " << FLAGS_flag_relu
            << " passed!!";
}