relu_kernel.cpp 2.7 KB
Newer Older
D
dolphin8 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dolphin8 已提交
14
#ifdef RELU_OP
D
dolphin8 已提交
15 16 17 18 19 20 21

#include "operators/kernel/relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
L
liuruilong 已提交
22
bool ReluKernel<GPU_CL, float>::Init(ReluParam<GPU_CL>* param) {
D
dolphin8 已提交
23
  this->cl_helper_.AddKernel("relu", "relu.cl");
L
liuruilong 已提交
24 25 26 27 28 29 30
  //  this->cl_helper_.AddKernel("relu_p0", "relu.cl");
  //  this->cl_helper_.AddKernel("relu_p1", "relu.cl");
  //  const auto dim =
  //      const_cast<framework::CLImage*>(param->InputX())->ImageDims();
  //  param->getMidImage().InitEmptyImage(this->cl_helper_.CLContext(),
  //                                      this->cl_helper_.CLCommandQueue(),
  //                                      dim);
D
dolphin8 已提交
31 32 33 34
  return true;
}

template <>
L
liuruilong 已提交
35
void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL>& param) {
Y
yangfei 已提交
36
  auto kernel = this->cl_helper_.KernelAt(0);
L
liuruilong 已提交
37 38
  //  auto kernel_p0 = this->cl_helper_.KernelAt(1);
  //  auto kernel_p1 = this->cl_helper_.KernelAt(2);
D
dolphin8 已提交
39
  const auto* input = param.InputX();
D
dolphin8 已提交
40
  auto* output = param.Out();
D
dolphin8 已提交
41
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*output);
D
dolphin8 已提交
42 43
  auto inputImage = input->GetCLImage();
  auto outputImage = output->GetCLImage();
L
liuruilong 已提交
44 45 46 47 48 49 50 51 52
  //  auto tImage =
  //      const_cast<ReluParam<GPU_CL>&>(param).getMidImage().GetCLImage();
  clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputImage);
  clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputImage);
  //  clSetKernelArg(kernel_p0, 0, sizeof(cl_mem), &inputImage);
  //  clSetKernelArg(kernel_p0, 0, sizeof(cl_mem), &tImage);
  //  clSetKernelArg(kernel_p1, 0, sizeof(cl_mem), &tImage);
  //  clSetKernelArg(kernel_p1, 1, sizeof(cl_mem), &outputImage);
  const size_t work_size[2] = {input->ImageWidth(), input->ImageHeight()};
Y
yangfei 已提交
53

L
liuruilong 已提交
54 55
  //  cl_event out_event = param.Out()->GetClEvent();
  //  cl_event wait_event = param.InputX()->GetClEvent();
L
liuruilong 已提交
56

L
liuruilong 已提交
57 58
  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2, NULL,
                         work_size, NULL, 0, NULL, NULL);
L
liuruilong 已提交
59 60 61
  //  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel_p1, 3,
  //  NULL,
  //                         work_size, NULL, 0, NULL, NULL);
D
dolphin8 已提交
62
}
D
dolphin8 已提交
63 64 65 66 67

template class ReluKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
68
#endif