relu_kernel.cpp 2.5 KB
Newer Older
D
dolphin8 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dolphin8 已提交
14
#ifdef RELU_OP
D
dolphin8 已提交
15 16 17 18 19 20 21

#include "operators/kernel/relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
L
liuruilong 已提交
22
bool ReluKernel<GPU_CL, float>::Init(ReluParam<GPU_CL>* param) {
D
dolphin8 已提交
23
  this->cl_helper_.AddKernel("relu", "relu.cl");
Y
yangfei 已提交
24 25 26 27 28 29
//  this->cl_helper_.AddKernel("relu_p0", "relu.cl");
//  this->cl_helper_.AddKernel("relu_p1", "relu.cl");
//  const auto dim =
//      const_cast<framework::CLImage*>(param->InputX())->ImageDims();
//  param->getMidImage().InitEmptyImage(this->cl_helper_.CLContext(),
//                                      this->cl_helper_.CLCommandQueue(), dim);
D
dolphin8 已提交
30 31 32 33
  return true;
}

template <>
L
liuruilong 已提交
34
void ReluKernel<GPU_CL, float>::Compute(const ReluParam<GPU_CL>& param) {
Y
yangfei 已提交
35 36 37
  auto kernel = this->cl_helper_.KernelAt(0);
//  auto kernel_p0 = this->cl_helper_.KernelAt(1);
//  auto kernel_p1 = this->cl_helper_.KernelAt(2);
D
dolphin8 已提交
38
  const auto* input = param.InputX();
D
dolphin8 已提交
39
  auto* output = param.Out();
D
dolphin8 已提交
40
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*output);
D
dolphin8 已提交
41 42
  auto inputImage = input->GetCLImage();
  auto outputImage = output->GetCLImage();
Y
yangfei 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
//  auto tImage =
//      const_cast<ReluParam<GPU_CL>&>(param).getMidImage().GetCLImage();
    clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputImage);
    clSetKernelArg(kernel, 1, sizeof(cl_mem), &outputImage);
//  clSetKernelArg(kernel_p0, 0, sizeof(cl_mem), &inputImage);
//  clSetKernelArg(kernel_p0, 0, sizeof(cl_mem), &tImage);
//  clSetKernelArg(kernel_p1, 0, sizeof(cl_mem), &tImage);
//  clSetKernelArg(kernel_p1, 1, sizeof(cl_mem), &outputImage);
    const size_t work_size[2] = {input->ImageWidth(), input->ImageHeight()};

    clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 2,
    NULL,
                           work_size, NULL, 0, NULL, NULL);
L
liuruilong 已提交
56 57 58
  //  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel_p1, 3,
  //  NULL,
  //                         work_size, NULL, 0, NULL, NULL);
D
dolphin8 已提交
59
}
D
dolphin8 已提交
60 61 62 63 64

template class ReluKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
65
#endif