elementwise_op_function.h 7.3 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "transform.h"

#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)

namespace paddle_mobile {
E
eclipsess 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    namespace operators {

        /*
         * Out = X ⊙ Y
         * If Y's shape does not match X' shape, they will be reshaped.
         * For example:
         * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
         *    pre=2, n=3*4, post=5
         *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
         * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
         *    pre=2*3, n=4*5, post=1
         *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
         */
        inline void get_mid_dims(const framework::DDim &x_dims,
                                 const framework::DDim &y_dims, const int axis,
                                 int *pre, int *n, int *post) {
            *pre = 1;
            *n = 1;
            *post = 1;
            // compute pre
            for (int i = 0; i < axis; ++i) {
                (*pre) *= x_dims[i];
            }

            for (int i = 0; i < y_dims.size(); ++i) {
                assert(x_dims[i + axis] == y_dims[i]);
                /// "Broadcast dimension mismatch.");
                (*n) *= y_dims[i];
            }

            for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
                (*post) *= x_dims[i];
            }
        }

        /// remove dims tail 1. (4,20,1,1) -> (4,20)
        inline void trim_trailing_singular_dims(framework::DDim *dims) {
            // Remove trailing dimensions of size 1 for y
            auto actual_dims_size = dims->size();
            for (; actual_dims_size != 0; --actual_dims_size) {
                if ((*dims)[actual_dims_size - 1] != 1)
                    break;
            }
            if (actual_dims_size != dims->size()) {
                auto actual_dims = framework::vectorize(*dims);
                actual_dims.resize(actual_dims_size);
                *dims = framework::make_ddim(actual_dims);
            }
        }

        template <typename T> class RowwiseTransformIterator {
          public:
            RowwiseTransformIterator(const T *ptr, int n)
                : ptr_(ptr), i_(0), n_(n) {}

            RowwiseTransformIterator<T> &operator++() {
                ++i_;
                if (UNLIKELY(i_ == n_)) {
                    i_ = 0;
                }
                return *this;
            }

            bool operator==(const RowwiseTransformIterator<T> &rhs) const {
                return (ptr_ + i_) == &(*rhs);
            }

            bool operator!=(const RowwiseTransformIterator<T> &rhs) const {
                return (ptr_ + i_) != &(*rhs);
            }

            const T &operator*() { return ptr_[i_]; }

          private:
            const T *ptr_;
            int i_;
            int64_t n_;
        };

        /// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
        /// dimension
        /// in (4,20,2) is 2 ,
        /// (20,1) move 1 stride , to fill(add) 2 element with the same number.
        template <typename T> class MidWiseTransformIterator {
          public:
            MidWiseTransformIterator(const T *ptr, int n, int post)
                : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

            MidWiseTransformIterator<T> &operator++() {
                ++j_;
                if (UNLIKELY(j_ == post_)) {
                    ++i_;
                    j_ = 0;
                    if (UNLIKELY(i_ == n_)) {
                        i_ = 0;
                    }
                }
                return *this;
            }

            bool operator==(const MidWiseTransformIterator<T> &rhs) const {
                return (ptr_ + i_) == &(*rhs);
            }

            bool operator!=(const MidWiseTransformIterator<T> &rhs) const {
                return (ptr_ + i_) != &(*rhs);
            }

            const T &operator*() { return ptr_[i_]; }

          private:
            const T *ptr_;
            int64_t i_;
            int64_t j_;
            int64_t n_;
            int64_t post_;
        };

        template <typename Functor, typename T, typename OutType = T>
        class TransformFunctor {
          public:
            TransformFunctor(const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z,
                             Functor func)
                : x_(x->data<T>()), y_(y->data<T>()),
                  z_(z->mutable_data<OutType>()), nx_(x->numel()), func_(func) {
            }

            inline void Run() const {
                math::Transform trans;
                // 同时执行func(x_, y_)传入z_。
                trans(x_, x_ + nx_, y_, z_, func_);
            }

            inline void RunRowWise(int n, int pre) const {
                math::Transform trans;
                trans(x_, x_ + nx_, RowwiseTransformIterator<T>(y_, n), z_,
                      func_);
            }

            inline void RunMidWise(int n, int pre, int post) const {
                math::Transform trans;
                trans(x_, x_ + nx_, MidWiseTransformIterator<T>(y_, n, post),
                      z_, func_);
            }

          private:
            const T *x_;
            const T *y_;
            OutType *z_;
            int64_t nx_;
            Functor func_;
        };

        template <typename Functor, typename T, typename OutType = T>
        void ElementwiseComputeEx(const framework::Tensor *x,
                                  const framework::Tensor *y, int axis,
                                  Functor func, framework::Tensor *z) {
            TransformFunctor<Functor, T, OutType> functor(x, y, z, func);

            auto x_dims = x->dims();
            auto y_dims = y->dims();
            // PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
            //                  "Rank of first input must >= rank of second
            //                  input.");

            if (x_dims == y_dims) {
                functor.Run();
                return;
            }

            /// axis = -1 represent the last dimension.
            axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
            // PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
            //               "Axis should be in range [0, x_dims)");
            trim_trailing_singular_dims(&y_dims);
            axis = (y_dims.size() == 0) ? x_dims.size() : axis;

            int pre, n, post;
            get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
            if (post == 1) {
                functor.RunRowWise(n, pre);
                return;
            } else {
                functor.RunMidWise(n, pre, post);
                return;
            }
        }

    } // namespace operators
E
eclipsess 已提交
211
} // namespace paddle