Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
123c037e
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
123c037e
编写于
5月 17, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add elementwise_add_op
上级
333ff13f
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
711 addition
and
7 deletion
+711
-7
CMakeLists.txt
CMakeLists.txt
+2
-1
src/operators/elementwise_add_op.cpp
src/operators/elementwise_add_op.cpp
+31
-0
src/operators/elementwise_add_op.h
src/operators/elementwise_add_op.h
+51
-0
src/operators/kernel/arm/elementwise_add_kernel.cpp
src/operators/kernel/arm/elementwise_add_kernel.cpp
+41
-0
src/operators/kernel/elementwise_add_kernel.h
src/operators/kernel/elementwise_add_kernel.h
+36
-0
src/operators/math/elementwise_op_function.h
src/operators/math/elementwise_op_function.h
+204
-0
src/operators/math/transform.h
src/operators/math/transform.h
+53
-0
src/operators/op_param.h
src/operators/op_param.h
+114
-0
test/elementwise_add_op_test.h
test/elementwise_add_op_test.h
+157
-0
test/main.cpp
test/main.cpp
+3
-2
test/test_helper.h
test/test_helper.h
+4
-4
test/test_include.h
test/test_include.h
+15
-0
未找到文件。
CMakeLists.txt
浏览文件 @
123c037e
...
...
@@ -46,5 +46,6 @@ target_link_libraries(paddle-mobile-static protobuf-lite openblas)
add_dependencies
(
paddle-mobile openblas_proj
)
# gen test
ADD_EXECUTABLE
(
paddle-mobile-test test/main.cpp test/test_helper.h
)
ADD_EXECUTABLE
(
paddle-mobile-test test/main.cpp test/test_helper.h
test/elementwise_add_op_test.h test/test_include.h
)
target_link_libraries
(
paddle-mobile-test paddle-mobile
)
src/operators/elementwise_add_op.cpp
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
ElementwiseAddOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
x_dim
=
param_
.
InputX
()
->
dims
();
param_
.
Out
()
->
Resize
(
x_dim
);
}
template
class
ElementwiseAddOp
<
CPU
,
float
>;
}
}
src/operators/elementwise_add_op.h
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "framework/operator.h"
#include "kernel/elementwise_add_kernel.h"
#include "op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
>
class
ElementwiseAddOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
ElementwiseAddOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
RunImpl
()
const
{
operators
::
ElementwiseAddKernel
<
DeviceType
,
T
,
ElementwiseAddParam
>
kernel
;
kernel
.
Compute
(
param_
);
}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
ElementwiseAddParam
param_
;
};
}
}
\ No newline at end of file
src/operators/kernel/arm/elementwise_add_kernel.cpp
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/elementwise_add_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
AddFunctor
{
inline
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
>
void
ElementwiseAddKernel
<
CPU
,
float
,
ElementwiseAddParam
>::
Compute
(
const
ElementwiseAddParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
const
Tensor
*
input_y
=
param
.
InputY
();
Tensor
*
Out
=
param
.
Out
();
Out
->
mutable_data
<
float
>
();
const
int
axis
=
param
.
Axis
();
ElementwiseComputeEx
<
AddFunctor
<
float
>
,
float
>
(
input_x
,
input_y
,
axis
,
AddFunctor
<
float
>
(),
Out
);
}
template
class
ElementwiseAddKernel
<
CPU
,
float
,
ElementwiseAddParam
>;
}
// namespace operators
}
// namespace paddle
src/operators/kernel/elementwise_add_kernel.h
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once;
#include "framework/operator.h"
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
namespace
framework
;
template
<
typename
DeviceType
,
typename
T
,
typename
P
>
class
ElementwiseAddKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
ElementwiseAddParam
>
{
public:
void
Compute
(
const
ElementwiseAddParam
&
param
)
const
;
};
}
}
src/operators/math/elementwise_op_function.h
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "transform.h"
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace
paddle_mobile
{
namespace
operators
{
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
// compute pre
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
assert
(
x_dims
[
i
+
axis
]
==
y_dims
[
i
]);
/// "Broadcast dimension mismatch.");
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
/// remove dims tail 1. (4,20,1,1) -> (4,20)
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
*
dims
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
->
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
((
*
dims
)[
actual_dims_size
-
1
]
!=
1
)
break
;
}
if
(
actual_dims_size
!=
dims
->
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
*
dims
);
actual_dims
.
resize
(
actual_dims_size
);
*
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
template
<
typename
T
>
class
RowwiseTransformIterator
{
public:
RowwiseTransformIterator
(
const
T
*
ptr
,
int
n
)
:
ptr_
(
ptr
),
i_
(
0
),
n_
(
n
)
{}
RowwiseTransformIterator
<
T
>
&
operator
++
()
{
++
i_
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
return
*
this
;
}
bool
operator
==
(
const
RowwiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
RowwiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
i_
];
}
private:
const
T
*
ptr_
;
int
i_
;
int64_t
n_
;
};
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last dimension
/// in (4,20,2) is 2 ,
/// (20,1) move 1 stride , to fill(add) 2 element with the same number.
template
<
typename
T
>
class
MidWiseTransformIterator
{
public:
MidWiseTransformIterator
(
const
T
*
ptr
,
int
n
,
int
post
)
:
ptr_
(
ptr
),
i_
(
0
),
j_
(
0
),
n_
(
n
),
post_
(
post
)
{}
MidWiseTransformIterator
<
T
>
&
operator
++
()
{
++
j_
;
if
(
UNLIKELY
(
j_
==
post_
))
{
++
i_
;
j_
=
0
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
}
return
*
this
;
}
bool
operator
==
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
i_
];
}
private:
const
T
*
ptr_
;
int64_t
i_
;
int64_t
j_
;
int64_t
n_
;
int64_t
post_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
class
TransformFunctor
{
public:
TransformFunctor
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
,
Functor
func
)
:
x_
(
x
->
data
<
T
>
()),
y_
(
y
->
data
<
T
>
()),
z_
(
z
->
mutable_data
<
OutType
>
()),
nx_
(
x
->
numel
()),
func_
(
func
)
{}
inline
void
Run
()
const
{
math
::
Transform
trans
;
// 同时执行func(x_, y_)传入z_。
trans
(
x_
,
x_
+
nx_
,
y_
,
z_
,
func_
);
}
inline
void
RunRowWise
(
int
n
,
int
pre
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
RowwiseTransformIterator
<
T
>
(
y_
,
n
),
z_
,
func_
);
}
inline
void
RunMidWise
(
int
n
,
int
pre
,
int
post
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
MidWiseTransformIterator
<
T
>
(
y_
,
n
,
post
),
z_
,
func_
);
}
private:
const
T
*
x_
;
const
T
*
y_
;
OutType
*
z_
;
int64_t
nx_
;
Functor
func_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
void
ElementwiseComputeEx
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
int
axis
,
Functor
func
,
framework
::
Tensor
*
z
)
{
TransformFunctor
<
Functor
,
T
,
OutType
>
functor
(
x
,
y
,
z
,
func
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
// PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
// "Rank of first input must >= rank of second input.");
if
(
x_dims
==
y_dims
)
{
functor
.
Run
();
return
;
}
/// axis = -1 represent the last dimension.
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
// PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
// "Axis should be in range [0, x_dims)");
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
functor
.
RunRowWise
(
n
,
pre
);
return
;
}
else
{
functor
.
RunMidWise
(
n
,
pre
,
post
);
return
;
}
}
}
// namespace operators
}
// namespace paddle
src/operators/math/transform.h
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
namespace
paddle_mobile
{
namespace
operators
{
namespace
math
{
// Transform applys a unary or a binary functor on each element in a
// range defined by a pair of iterators.
//
// - The specialization for CPU calls std::transform.
// - The specialization for CUDA calls thrust::tranform.
//
// NOTE: We need to define InputIter and OutputIter defined as
// different types, because the InputIter points op's inputs and
// OutputIter pints to op's outputs.
//
// NOTE: We don't assume that InputIter to be const InputType* and
// OutputIter to be OutputType*, because we might use a iterator
// class, paddle::fluid::operators::RowwiseTRansformIterator.
struct
Transform
{
template
<
typename
InputIter
,
typename
OutputIter
,
typename
UnaryOperation
>
void
operator
()(
InputIter
first
,
InputIter
last
,
OutputIter
result
,
UnaryOperation
op
)
{
std
::
transform
(
first
,
last
,
result
,
op
);
}
template
<
typename
InputIter1
,
typename
InputIter2
,
typename
OutputIter
,
typename
BinaryOperation
>
void
operator
()(
InputIter1
first1
,
InputIter1
last1
,
InputIter2
first2
,
OutputIter
result
,
BinaryOperation
op
)
{
std
::
transform
(
first1
,
last1
,
first2
,
result
,
op
);
}
};
}
}
// namespace platform
}
// namespace paddle
src/operators/op_param.h
浏览文件 @
123c037e
...
...
@@ -37,11 +37,32 @@ protected:
return
GetVarValue
<
T
>
(
"Input"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputXFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"X"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputYFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Y"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetMultiVarValue
<
T
>
(
"Input"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Output"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Out"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
FilterFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Filter"
,
inputs
,
scope
);
...
...
@@ -64,6 +85,20 @@ protected:
return
nullptr
;
}
}
template
<
typename
T
>
static
std
::
vector
<
T
*>
GetMultiVarValue
(
std
::
string
key
,
const
VariableNameMap
&
var_map
,
const
Scope
&
scope
)
{
auto
var_vecs
=
var_map
.
at
(
key
);
assert
(
var_vecs
.
size
()
>
1
);
std
::
vector
<
T
*>
var_res
;
for
(
auto
&
var_vec
:
var_vecs
)
{
auto
var
=
scope
.
FindVar
(
var_vec
);
var_res
.
push_back
(
var
->
GetMutable
<
T
>
());
}
return
var_res
;
}
};
class
ConvParam
:
OpParam
{
...
...
@@ -106,5 +141,84 @@ private:
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
ConvParam
&
conv_param
);
class
ElementwiseAddParam
:
OpParam
{
public:
ElementwiseAddParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
const
Tensor
*
InputY
()
const
{
return
input_y_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
&
Axis
()
const
{
return
axis_
;
}
private:
Tensor
*
input_x_
;
Tensor
*
input_y_
;
Tensor
*
out_
;
int
axis_
;
};
class
MulParam
:
OpParam
{
public:
MulParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_x_
=
InputXFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_y_
=
InputYFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
x_num_col_dims_
=
GetAttr
<
int
>
(
"x_num_col_dims"
,
attrs
);
y_num_col_dims_
=
GetAttr
<
int
>
(
"y_num_col_dims"
,
attrs
);
}
const
Tensor
*
InputX
()
const
{
return
input_x_
;
}
const
Tensor
*
InputY
()
const
{
return
input_y_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
&
XNumColDims
()
const
{
return
x_num_col_dims_
;
}
const
int
&
YNumColDims
()
const
{
return
y_num_col_dims_
;
}
private:
Tensor
*
input_x_
;
Tensor
*
input_y_
;
Tensor
*
out_
;
int
x_num_col_dims_
;
int
y_num_col_dims_
;
};
class
ConcatParam
:
public
OpParam
{
public:
ConcatParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
inputs_
=
InputMultiFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
}
std
::
vector
<
Tensor
*>
Inputs
()
const
{
return
inputs_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
&
Axis
()
const
{
return
axis_
;
}
private:
std
::
vector
<
Tensor
*>
inputs_
;
Tensor
*
out_
;
int
axis_
;
};
}
// namespace operators
}
// namespace paddle_mobile
test/elementwise_add_op_test.h
0 → 100644
浏览文件 @
123c037e
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "operators/elementwise_add_op.h"
#include "test_include.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestElementwiseAddOp
{
public:
TestElementwiseAddOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// std::cout << " **block size " << blocks.size() << std::endl;
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// std::cout << " ops " << ops.size() << std::endl;
for
(
int
j
=
0
;
j
<
ops
.
size
();
++
j
)
{
std
::
shared_ptr
<
OpDesc
>
op
=
ops
[
j
];
if
(
op
->
Type
()
==
"elementwise_add"
)
{
if
(
op
->
GetAttrMap
().
at
(
"axis"
).
Get
<
int
>
()
!=
-
1
)
{
std
::
cout
<<
"attr: axis = "
<<
op
->
GetAttrMap
().
at
(
"axis"
).
Get
<
int
>
()
<<
std
::
endl
;
}
}
std
::
cout
<<
"op:"
<<
op
->
Type
()
<<
std
::
endl
;
if
(
op
->
Type
()
==
"elementwise_add"
&&
op
->
Input
(
"X"
)[
0
]
==
"batch_norm_2.tmp_2"
)
{
std
::
cout
<<
" elementwise_add attr size: "
<<
op
->
GetAttrMap
().
size
()
<<
std
::
endl
;
std
::
cout
<<
" inputs size: "
<<
op
->
GetInputs
().
size
()
<<
std
::
endl
;
std
::
cout
<<
" outputs size: "
<<
op
->
GetOutputs
().
size
()
<<
std
::
endl
;
std
::
cout
<<
" Input X is : "
<<
op
->
Input
(
"X"
)[
0
]
<<
std
::
endl
;
std
::
cout
<<
" Input Y is : "
<<
op
->
Input
(
"Y"
)[
0
]
<<
std
::
endl
;
std
::
cout
<<
" Output Out is : "
<<
op
->
Output
(
"Out"
)[
0
]
<<
std
::
endl
;
Attribute
axis_attr
=
op
->
GetAttrMap
().
at
(
"axis"
);
int
axis
=
axis_attr
.
Get
<
int
>
();
std
::
cout
<<
" Attr axis is : "
<<
axis
<<
std
::
endl
;
std
::
shared_ptr
<
operators
::
ElementwiseAddOp
<
Dtype
,
float
>>
add
=
std
::
make_shared
<
operators
::
ElementwiseAddOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
add
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict_add
(
Tensor
&
t1
,
Tensor
&
t2
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x_feed_value
=
scope
->
Var
(
"batch_norm_2.tmp_2"
);
auto
tensor_x
=
x_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x
->
ShareDataWith
(
t1
);
Variable
*
y_feed_value
=
scope
->
Var
(
"batch_norm_0.tmp_3"
);
auto
tensor_y
=
y_feed_value
->
GetMutable
<
Tensor
>
();
tensor_y
->
ShareDataWith
(
t2
);
Variable
*
con_output
=
scope
->
Var
(
"elementwise_add_0.tmp_0"
);
Tensor
*
output_tensor
=
con_output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
1
,
3
,
224
,
224
});
// std::cout << typeid(output_tensor).name() << std::endl;
// std::cout << "output_tensor dims: " << output_tensor->dims() <<
// std::endl;
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict_add
(
t1
,
t2
,
0
);
return
out_tensor
;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict_add
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
std
::
cout
<<
"op -> run()"
<<
std
::
endl
;
op
->
Run
();
}
}
};
template
class
TestElementwiseAddOp
<
CPU
>;
}
// namespace framework
namespace
test
{
void
testElementwiseAdd
()
{
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/image_classification_resnet.inference.model"
));
/// input x (1,3,224,224)
paddle_mobile
::
framework
::
Tensor
inputx
;
SetupTensor
<
float
>
(
&
inputx
,
{
1
,
3
,
224
,
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputx_ptr
=
inputx
.
data
<
float
>
();
/// input y (224,)
paddle_mobile
::
framework
::
Tensor
inputy
;
SetupTensor
<
float
>
(
&
inputy
,
{
224
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
float
*
inputy_ptr
=
inputy
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestElementwiseAddOp
<
paddle_mobile
::
CPU
>
testElementwiseAddOp
(
program
);
auto
output_add
=
testElementwiseAddOp
.
predict_add
(
inputx
,
inputy
);
float
*
output_add_ptr
=
output_add
->
data
<
float
>
();
for
(
int
j
=
0
;
j
<
output_add
->
numel
();
++
j
)
{
// std::cout << "value of output: " << output_add_ptr[j] << std::endl;
}
/// output (1,3,224,224)
std
::
cout
<<
"output memory size : "
<<
output_add
->
memory_size
()
<<
std
::
endl
;
std
::
cout
<<
"output numel : "
<<
output_add
->
numel
()
<<
std
::
endl
;
std
::
cout
<<
inputx_ptr
[
226
]
<<
" + "
<<
inputy_ptr
[
2
]
<<
" = "
<<
output_add_ptr
[
226
]
<<
std
::
endl
;
}
}
// namespace test
}
// namespace paddle_mobile
test/main.cpp
浏览文件 @
123c037e
...
...
@@ -16,6 +16,7 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "elementwise_add_op_test.h"
#include "framework/executor.h"
#include "io.h"
#include "test_helper.h"
...
...
@@ -73,7 +74,7 @@ int main() {
// float* output_ptr = output->data<float>();
// for (int j = 0; j < output->numel(); ++j) {
// std::cout << " value of output: " << output_ptr[j] << std::endl;
//
}
//
paddle_mobile
::
test
::
testElementwiseAdd
();
return
0
;
}
test/test_helper.h
浏览文件 @
123c037e
...
...
@@ -15,19 +15,19 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include <random>
#pragma once
#include "framework/ddim.h"
#include "framework/tensor.h"
#include <random>
template
<
typename
T
>
void
SetupTensor
(
paddle_mobile
::
framework
::
Tensor
*
input
,
void
SetupTensor
(
paddle_mobile
::
framework
::
Tensor
*
input
,
paddle_mobile
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
static
unsigned
int
seed
=
100
;
std
::
mt19937
rng
(
seed
++
);
std
::
uniform_real_distribution
<
double
>
uniform_dist
(
0
,
1
);
T
*
input_ptr
=
input
->
mutable_data
<
T
>
(
dims
);
T
*
input_ptr
=
input
->
mutable_data
<
T
>
(
dims
);
for
(
int
i
=
0
;
i
<
input
->
numel
();
++
i
)
{
input_ptr
[
i
]
=
static_cast
<
T
>
(
uniform_dist
(
rng
)
*
(
upper
-
lower
)
+
lower
);
}
...
...
test/test_include.h
0 → 100644
浏览文件 @
123c037e
#include "framework/block_desc.h"
#include "framework/framework.pb.h"
#include "framework/lod_tensor.h"
#include "framework/operator.h"
#include "framework/program.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
#include "framework/variable.h"
#include "io.h"
#include "test_helper.h"
#include <map>
#include <string>
#include <vector>
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录