slice_op_test.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/slice_op.h"
#include <gtest/gtest.h>
#include <utility>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

static void slice_ref(const float* input,
                      std::vector<int64_t> in_dims,
                      std::vector<int> axes,
                      std::vector<int> starts,
                      std::vector<int> ends,
                      float* out) {
  auto out_dims = in_dims;
  std::vector<int> real_starts(in_dims.size(), 0);
  std::vector<int> real_ends(in_dims.size(), 0);
  std::vector<int> real_step(in_dims.size(), 0);
  for (size_t i = 0; i < in_dims.size(); i++) {
    real_ends[i] = in_dims[i];
  }
  for (size_t i = 0; i < axes.size(); i++) {
    int dim_value = in_dims[axes[i]];
    if (dim_value > 0) {
      int start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
      int end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
      start = std::max(start, 0);
      end = std::max(end, 0);
      end = std::min(end, dim_value);
      out_dims[axes[i]] = end - start;
      real_starts[axes[i]] = start;
      real_ends[axes[i]] = end;
    }
  }
  const int LEN = in_dims.size();
  int dst_step[LEN];
  for (size_t i = 0; i < in_dims.size(); ++i) {
    dst_step[i] = 1;
  }
  int src_step[LEN];
  for (size_t i = 0; i < in_dims.size(); ++i) {
    src_step[i] = 1;
  }
  int out_num = out_dims[in_dims.size() - 1];
  for (int i = in_dims.size() - 2; i >= 0; i--) {
    dst_step[i] = out_dims[i + 1] * dst_step[i + 1];
    src_step[i] = in_dims[i + 1] * src_step[i + 1];
    out_num *= out_dims[i];
  }

  for (int dst_id = 0; dst_id < out_num; dst_id++) {
    int src_id = 0;
    int index_id = dst_id;
    for (size_t j = 0; j < out_dims.size(); j++) {
      int cur_id = index_id / dst_step[j];
      index_id = index_id % dst_step[j];
      src_id += (cur_id + real_starts[j]) * src_step[j];
    }
    out[dst_id] = input[src_id];
  }
}

static void test_case(std::vector<int64_t> x_shape,
                      std::vector<int64_t> out_shape,
                      std::vector<int> starts,
                      std::vector<int> ends,
                      std::vector<int> axes) {
  Scope scope;

  std::string x_var_name = "x";
  std::string out_var_name = "out";
  auto* x = scope.NewTensor(x_var_name);
  auto* out = scope.NewTensor(out_var_name);
  x->Resize(lite::DDim(x_shape));
  out->Resize(lite::DDim(out_shape));

  auto x_data = x->mutable_data<float>();
  FillTensor<float, float>(x, 0.f, 2.f);

  cpp::OpDesc opdesc;
  opdesc.SetType("slice");
  opdesc.SetInput("Input", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axes", axes);
  opdesc.SetAttr("starts", starts);
  opdesc.SetAttr("ends", ends);

  std::vector<float> out_ref(out->data_size(), 0);
  slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data());

  auto type_cast = [](int64_t in) { return static_cast<int>(in); };
  std::vector<int> i_dims;
  std::transform(
      x_shape.cbegin(), x_shape.cend(), std::back_inserter(i_dims), type_cast);

  auto nchw2nhwc_axis = std::move(GetAxisNCHW2NHWC<int>(x_shape.size()));

  Tensor input_x;
  input_x.Resize(x->dims());
  transpose<float>(x->mutable_data<float>(),
                   input_x.mutable_data<float>(),
                   i_dims,
                   nchw2nhwc_axis);
  x->CopyDataFrom(input_x);

  auto op = CreateOp<operators::SliceOp>(opdesc, &scope);
  LaunchOp(op, {x_var_name}, {out_var_name});

  Tensor output_trans;
  auto os = out->dims().Vectorize();
  output_trans.Resize(os);
  std::vector<int> o_dims(os.size());
  for (size_t i = 0; i < os.size(); ++i) {
    o_dims[i] = os[nchw2nhwc_axis[i]];
  }
  transpose<float>(out->mutable_data<float>(),
                   output_trans.mutable_data<float>(),
                   o_dims,
                   GetAxisNHWC2NCHW<int>(x_shape.size()));

  auto out_data = output_trans.mutable_data<float>();
  for (DDim::value_type i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_ref[i], out_data[i], 1e-4);
  }
}

TEST(MLUBridges, slice) {
  /* test_case({3}, {3}, {-3}, {3}, {0}); */
  test_case({3, 4}, {3, 4}, {-3, 0}, {3, 100}, {0, 1});
  test_case({3, 4, 5}, {3, 4, 2}, {-3, 0, 2}, {3, 100, -1}, {0, 1, 2});
  test_case({3, 4, 5, 6}, {3, 4, 2, 6}, {-3, 0, 2}, {3, 100, -1}, {0, 1, 2});
  /* test_case({3, 4, 5, 6, 3}, {3, 4, 2, 6, 3}, {-3, 0, 2}, {3, 100, -1}, {0,
   * 1, 2}); */
  /* test_case({3, 4, 5, 6, 5, 2}, {3, 4, 2, 6, 5, 2}, {-3, 0, 2}, {3, 100, 1},
   * {0, 1, 2}); */
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(slice, kMLU);