// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/slice_op.h" #include #include #include #include "lite/core/op_lite.h" #include "lite/core/op_registry.h" #include "lite/kernels/mlu/bridges/test_helper.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace mlu { static void slice_ref(const float* input, std::vector in_dims, std::vector axes, std::vector starts, std::vector ends, float* out) { auto out_dims = in_dims; std::vector real_starts(in_dims.size(), 0); std::vector real_ends(in_dims.size(), 0); std::vector real_step(in_dims.size(), 0); for (size_t i = 0; i < in_dims.size(); i++) { real_ends[i] = in_dims[i]; } for (size_t i = 0; i < axes.size(); i++) { int dim_value = in_dims[axes[i]]; if (dim_value > 0) { int start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i]; int end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i]; start = std::max(start, 0); end = std::max(end, 0); end = std::min(end, dim_value); out_dims[axes[i]] = end - start; real_starts[axes[i]] = start; real_ends[axes[i]] = end; } } const int LEN = in_dims.size(); int dst_step[LEN]; for (size_t i = 0; i < in_dims.size(); ++i) { dst_step[i] = 1; } int src_step[LEN]; for (size_t i = 0; i < in_dims.size(); ++i) { src_step[i] = 1; } int out_num = out_dims[in_dims.size() - 1]; for (int i = in_dims.size() - 2; i >= 0; i--) { dst_step[i] = out_dims[i + 1] * dst_step[i + 1]; src_step[i] = in_dims[i + 1] * src_step[i + 1]; out_num *= out_dims[i]; } for (int dst_id = 0; dst_id < out_num; dst_id++) { int src_id = 0; int index_id = dst_id; for (size_t j = 0; j < out_dims.size(); j++) { int cur_id = index_id / dst_step[j]; index_id = index_id % dst_step[j]; src_id += (cur_id + real_starts[j]) * src_step[j]; } out[dst_id] = input[src_id]; } } static void test_case(std::vector x_shape, std::vector out_shape, std::vector starts, std::vector ends, std::vector axes) { Scope scope; std::string x_var_name = "x"; std::string out_var_name = "out"; auto* x = scope.NewTensor(x_var_name); auto* out = scope.NewTensor(out_var_name); x->Resize(lite::DDim(x_shape)); out->Resize(lite::DDim(out_shape)); auto x_data = x->mutable_data(); FillTensor(x, 0.f, 2.f); cpp::OpDesc opdesc; opdesc.SetType("slice"); opdesc.SetInput("Input", {x_var_name}); opdesc.SetOutput("Out", {out_var_name}); opdesc.SetAttr("axes", axes); opdesc.SetAttr("starts", starts); opdesc.SetAttr("ends", ends); std::vector out_ref(out->data_size(), 0); slice_ref(x_data, x_shape, axes, starts, ends, out_ref.data()); auto type_cast = [](int64_t in) { return static_cast(in); }; std::vector i_dims; std::transform( x_shape.cbegin(), x_shape.cend(), std::back_inserter(i_dims), type_cast); auto nchw2nhwc_axis = std::move(GetAxisNCHW2NHWC(x_shape.size())); Tensor input_x; input_x.Resize(x->dims()); transpose(x->mutable_data(), input_x.mutable_data(), i_dims, nchw2nhwc_axis); x->CopyDataFrom(input_x); auto op = CreateOp(opdesc, &scope); LaunchOp(op, {x_var_name}, {out_var_name}); Tensor output_trans; auto os = out->dims().Vectorize(); output_trans.Resize(os); std::vector o_dims(os.size()); for (size_t i = 0; i < os.size(); ++i) { o_dims[i] = os[nchw2nhwc_axis[i]]; } transpose(out->mutable_data(), output_trans.mutable_data(), o_dims, GetAxisNHWC2NCHW(x_shape.size())); auto out_data = output_trans.mutable_data(); for (DDim::value_type i = 0; i < out->dims().production(); i++) { EXPECT_NEAR(out_ref[i], out_data[i], 1e-4); } } TEST(MLUBridges, slice) { /* test_case({3}, {3}, {-3}, {3}, {0}); */ test_case({3, 4}, {3, 4}, {-3, 0}, {3, 100}, {0, 1}); test_case({3, 4, 5}, {3, 4, 2}, {-3, 0, 2}, {3, 100, -1}, {0, 1, 2}); test_case({3, 4, 5, 6}, {3, 4, 2, 6}, {-3, 0, 2}, {3, 100, -1}, {0, 1, 2}); /* test_case({3, 4, 5, 6, 3}, {3, 4, 2, 6, 3}, {-3, 0, 2}, {3, 100, -1}, {0, * 1, 2}); */ /* test_case({3, 4, 5, 6, 5, 2}, {3, 4, 2, 6, 5, 2}, {-3, 0, 2}, {3, 100, 1}, * {0, 1, 2}); */ } } // namespace mlu } // namespace subgraph } // namespace lite } // namespace paddle USE_SUBGRAPH_BRIDGE(slice, kMLU);