conv_kernel.cpp 4.6 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"
Z
zhaojiaying01 已提交
18
#include "operators/kernel/cl/cl-kernel-func/conv_func.h"
L
liuruilong 已提交
19 20 21 22 23 24

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
25 26 27 28 29 30 31 32 33
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
34 35
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
L
liuruilong 已提交
36 37
  DLOG << " width of one block: " << param->Filter()->dims()[3];
  DLOG << " height of one block: " << param->Filter()->dims()[2];
L
liuruilong 已提交
38 39
  DLOG << " filter dims: " << param->Filter()->dims();

40 41 42
  const std::string conv_kernel_file = "conv_kernel.cl";
  const std::string wino_kernel_file = "winograd_transform.cl";

L
liuruilong 已提交
43
  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
44
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT;
Z
zhaojiaying01 已提交
45 46
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());
47 48

    this->cl_helper_.AddKernel("conv_1x1_spl", conv_kernel_file);
Z
zhaojiaying01 已提交
49
    DLOG << "conv 1x1";
L
liuruilong 已提交
50

Z
zhaojiaying01 已提交
51
  } else if (param->Filter()->dims()[1] == 1 &&
Y
yangfei 已提交
52 53
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
Z
zhaojiaying01 已提交
54 55
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
Z
zhaojiaying01 已提交
56 57 58 59 60 61 62
    if (param->Strides()[0] == 1 && param->Dilations()[0] == 1) {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3s1", conv_kernel_file);
    } else {
      param->ExecMode() = ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT;
      this->cl_helper_.AddKernel("depth_conv_3x3", conv_kernel_file);
    }
Z
zhaojiaying01 已提交
63
    DLOG << "depth_conv 3x3";
L
liuruilong 已提交
64

L
liuruilong 已提交
65 66
  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    //    if (param->Strides()[0] == param->Strides()[1] &&
    //        param->Strides()[0] == 1 && param->Input()->dims()[2] >= 32) {
    //      param->ExecMode() = ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT;
    //      this->cl_helper_.AddKernel("winograd_filter_transform_2x2",
    //                                 wino_kernel_file);
    //      this->cl_helper_.AddKernel("winograd_input_transform_2x2",
    //                                 wino_kernel_file);
    //      this->cl_helper_.AddKernel("matmul", "matmul.cl");
    //      this->cl_helper_.AddKernel("winograd_output_transform_2x2",
    //                                 wino_kernel_file);
    //
    //      winograd_transform_weight<4, 3>(&this->cl_helper_, param->Filter());
    //
    //    } else {
    param->ExecMode() = ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT;
Z
zhaojiaying01 已提交
82 83
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
84 85 86

    this->cl_helper_.AddKernel("conv_3x3", conv_kernel_file);
    //    }
Z
zhaojiaying01 已提交
87
    DLOG << "conv 3x3";
L
liuruilong 已提交
88

L
liuruilong 已提交
89 90 91
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
92

L
liuruilong 已提交
93 94 95 96 97
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
98 99 100 101 102 103 104 105 106
  switch (param.ExecMode()) {
    case ConvParam<GPU_CL>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<4, 3>(&this->cl_helper_, param);
      break;
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW1x1_FLOAT:
    case ConvParam<GPU_CL>::EXEC_SLIDINGWINDOW3x3_FLOAT:
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3_FLOAT:
      ConvAddBnRelu(&this->cl_helper_, param);
      break;
Z
zhaojiaying01 已提交
107 108 109
    case ConvParam<GPU_CL>::EXEC_DEPTHWISE3x3S1_FLOAT:
      DWConvAddBnRelu(&this->cl_helper_, param);
      break;
110 111 112 113
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
L
liuruilong 已提交
114 115 116 117 118 119 120 121
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif