layout_compute.h 4.4 KB
Newer Older
J
jackzhang235 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <Eigen/Core>
#include <string>
#include <vector>
#include "lite/backends/x86/math/math_function.h"
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/operators/layout_op.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace mlu {

template <lite::TargetType Target, typename T>
inline void LayoutTransCompute(const int dim,
                               const lite::Context<Target>& context,
                               const lite::Tensor& in,
                               lite::Tensor* out,
                               const std::vector<int>& axis) {
  switch (dim) {
    case 2:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 2> trans2;
      trans2(context, in, out, axis);
      break;
    case 3:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 3> trans3;
      trans3(context, in, out, axis);
      break;
    case 4:
      paddle::lite::x86::math::Transpose<lite::TargetType::kX86, T, 4> trans4;
      trans4(context, in, out, axis);
      break;
    default:
      CHECK(0) << ("Unsupport dim in mlu layout");
  }
}

template <PrecisionType Precision>
class LayoutNchwToNhwcCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
    out->template mutable_data<float>();
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

70 71
    const auto origin_dims = out->dims().Vectorize();

J
jackzhang235 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        axis = {0, 2, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
        break;
      case 4:
        axis = {0, 2, 3, 1};
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[3], out->dims()[1]});
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nchw to nhwc";
    }

J
jackzhang235 已提交
91
    LayoutTransCompute<lite::TargetType::kX86, float>(
J
jackzhang235 已提交
92
        x_dims, context, *x, out, axis);
93 94 95 96

    if (x_dims > 2) {
      out->Resize(origin_dims);
    }
J
jackzhang235 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  }

  std::string doc() const override {
    return "Mlu layout transform nchw to nhwc";
  }
};

template <PrecisionType Precision>
class LayoutNhwcToNchwCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::LayoutParam;

  void Run() override {
    auto& param = this->template Param<param_t>();
    auto* x = param.x;
    auto* out = param.y;
    out->template mutable_data<float>();
    auto x_dims = param.x->dims().size();
    auto& context = this->ctx_->template As<X86Context>();

118 119
    const auto origin_dims = out->dims().Vectorize();

J
jackzhang235 已提交
120 121 122 123 124 125 126 127
    std::vector<int> axis;
    switch (x_dims) {
      case 2:
        axis = {0, 1};
        break;
      case 3:
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[2], out->dims()[1]});
128
        axis = {0, 2, 1};
J
jackzhang235 已提交
129 130 131 132
        break;
      case 4:
        out->Resize(std::vector<int64_t>{
            out->dims()[0], out->dims()[3], out->dims()[1], out->dims()[2]});
133
        axis = {0, 3, 1, 2};
J
jackzhang235 已提交
134 135 136 137 138
        break;
      default:
        CHECK(0) << "Unsupport dim in mlu layout nhwc to nchw";
    }

J
jackzhang235 已提交
139
    LayoutTransCompute<lite::TargetType::kX86, float>(
J
jackzhang235 已提交
140
        x_dims, context, *x, out, axis);
141 142 143 144

    if (x_dims > 2) {
      out->Resize(origin_dims);
    }
J
jackzhang235 已提交
145 146 147 148 149 150 151 152 153 154 155
  }

  std::string doc() const override {
    return "Mlu layout transform nhwc to nchw";
  }
};

}  // namespace mlu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle