Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
124b097a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
124b097a
编写于
3月 26, 2020
作者:
J
jackzhang235
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
shape is alwayes nchw, layout can be chosen
上级
68533439
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
89 addition
and
156 deletion
+89
-156
lite/kernels/mlu/bridges/act_op.cc
lite/kernels/mlu/bridges/act_op.cc
+1
-1
lite/kernels/mlu/bridges/batch_norm_op.cc
lite/kernels/mlu/bridges/batch_norm_op.cc
+1
-1
lite/kernels/mlu/bridges/concat_op.cc
lite/kernels/mlu/bridges/concat_op.cc
+14
-41
lite/kernels/mlu/bridges/conv_op.cc
lite/kernels/mlu/bridges/conv_op.cc
+6
-21
lite/kernels/mlu/bridges/elementwise_ops.cc
lite/kernels/mlu/bridges/elementwise_ops.cc
+2
-2
lite/kernels/mlu/bridges/fc_op.cc
lite/kernels/mlu/bridges/fc_op.cc
+3
-6
lite/kernels/mlu/bridges/graph.cc
lite/kernels/mlu/bridges/graph.cc
+2
-2
lite/kernels/mlu/bridges/interpolate_op.cc
lite/kernels/mlu/bridges/interpolate_op.cc
+3
-20
lite/kernels/mlu/bridges/pool_op.cc
lite/kernels/mlu/bridges/pool_op.cc
+11
-18
lite/kernels/mlu/bridges/scale_op.cc
lite/kernels/mlu/bridges/scale_op.cc
+1
-1
lite/kernels/mlu/bridges/softmax_op.cc
lite/kernels/mlu/bridges/softmax_op.cc
+1
-2
lite/kernels/mlu/bridges/transpose_op.cc
lite/kernels/mlu/bridges/transpose_op.cc
+28
-35
lite/kernels/mlu/layout_compute.h
lite/kernels/mlu/layout_compute.h
+14
-2
lite/kernels/mlu/subgraph_compute.h
lite/kernels/mlu/subgraph_compute.h
+2
-4
未找到文件。
lite/kernels/mlu/bridges/act_op.cc
浏览文件 @
124b097a
...
...
@@ -37,7 +37,7 @@ int ActConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
HWC
,
fp_type
);
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
CHW
,
fp_type
);
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
cnmlBaseOp_t
activation_op
;
...
...
lite/kernels/mlu/bridges/batch_norm_op.cc
浏览文件 @
124b097a
...
...
@@ -42,7 +42,7 @@ int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
output
=
scope
->
FindVar
(
y_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
y_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
HWC
,
graph
->
FPType
());
y_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
CHW
,
graph
->
FPType
());
CHECK
(
graph
->
HasNode
(
x_var_name
));
...
...
lite/kernels/mlu/bridges/concat_op.cc
浏览文件 @
124b097a
...
...
@@ -32,60 +32,33 @@ int ConcatConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
x_var_name
=
op_info
->
Input
(
"X"
);
auto
out_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
param_axis
=
op_info
->
GetAttr
<
int
>
(
"axis"
);
// auto x = scope->FindVar(x_var_name[0])->GetMutable<Tensor>();
auto
input_num
=
x_var_name
.
size
();
std
::
vector
<
cnmlTensor_t
>
input_tensor
;
std
::
vector
<
std
::
vector
<
int64_t
>>
input_dims
;
for
(
auto
x_name
:
x_var_name
)
{
CHECK
(
graph
->
HasNode
(
x_name
));
input_tensor
.
push_back
(
graph
->
GetNode
(
x_name
)
->
mlu_tensor
());
auto
x
=
scope
->
FindVar
(
x_name
)
->
GetMutable
<
Tensor
>
();
input_dims
.
push_back
(
x
->
dims
().
Vectorize
());
}
auto
dims
=
input_dims
[
0
]
.
size
();
auto
dims
=
output_dims
.
size
();
int
axis
=
(
param_axis
<
0
)
?
(
param_axis
+
dims
)
:
param_axis
;
int
nhwc_axis
=
-
1
;
if
(
dims
==
4
)
{
int
nchw_to_nhwc_axis_map
[
4
]
=
{
0
,
3
,
1
,
2
};
nhwc_axis
=
nchw_to_nhwc_axis_map
[
axis
];
}
else
if
(
dims
==
3
)
{
int
nchw_to_nhwc_axis_map
[
3
]
=
{
0
,
2
,
1
};
nhwc_axis
=
nchw_to_nhwc_axis_map
[
axis
];
}
else
{
CHECK
(
0
)
<<
"Unsupport dims in mlu concat"
;
}
std
::
vector
<
int64_t
>
output_dims
;
output_dims
.
assign
(
dims
,
0
);
/* std::cout << string_format("concat axis: %d(NCHW), %d(NHWC)", axis,
* nhwc_axis) << std::endl; */
for
(
int
i
=
0
;
i
<
output_dims
.
size
();
++
i
)
{
if
(
i
==
nhwc_axis
)
{
for
(
auto
&
dim
:
input_dims
)
output_dims
[
i
]
+=
dim
[
i
];
}
else
{
output_dims
[
i
]
=
input_dims
[
0
][
i
];
}
}
/* std::cout << string_format("concat output dim: %ld, %ld, %ld, %ld") <<
* std::endl; */
CHECK_LE
(
axis
,
4
)
<<
"Unsupport dims in mlu concat"
;
int
nchw_to_nhwc_axis_map
[
4
]
=
{
0
,
3
,
1
,
2
};
int
nhwc_axis
=
nchw_to_nhwc_axis_map
[
axis
];
auto
*
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
output
->
Resize
(
output_dims
);
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
HWC
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
CHW
,
graph
->
FPType
());
cnmlBaseOp_t
concat_op
;
cnmlTensor_t
outputs
[
1
];
outputs
[
0
]
=
output_tensor
->
mlu_tensor
();
CNML_CALL
(
cnmlCreateNdConcatOp
(
&
concat_op
,
nhwc_axis
,
input_tensor
.
data
(),
input_num
,
outputs
,
1
));
cnmlTensor_t
outputs
=
output_tensor
->
mlu_tensor
();
CNML_CALL
(
cnmlCreateNdConcatOp
(
&
concat_op
,
nhwc_axis
,
input_tensor
.
data
(),
x_var_name
.
size
(),
&
outputs
,
1
));
graph
->
FuseOp
(
concat_op
);
return
SUCCESS
;
}
...
...
lite/kernels/mlu/bridges/conv_op.cc
浏览文件 @
124b097a
...
...
@@ -33,13 +33,14 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// get input, filter and op attributes
const
auto
input_var_name
=
op_info
->
Input
(
"Input"
).
front
();
const
auto
&
input_dims
_nhwc
=
const
auto
&
input_dims
=
scope
->
FindVar
(
input_var_name
)
->
GetMutable
<
Tensor
>
()
->
dims
();
const
auto
input_dims
=
DimNHWC2NCHW
(
input_dims_nhwc
);
const
auto
filter_var_name
=
op_info
->
Input
(
"Filter"
).
front
();
auto
*
filter
=
scope
->
FindVar
(
filter_var_name
)
->
GetMutable
<
Tensor
>
();
const
auto
&
filter_dims
=
filter
->
dims
();
const
auto
output_var_name
=
op_info
->
Output
(
"Output"
).
front
();
auto
*
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
Tensor
>
();
const
auto
output_shape
=
output
->
dims
().
Vectorize
();
const
auto
bs
=
input_dims
[
0
];
const
auto
oc
=
filter_dims
[
0
];
CHECK_EQ
(
input_dims
.
size
(),
4
);
...
...
@@ -70,24 +71,8 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
input_dims
,
filter_dims
);
std
::
vector
<
int64_t
>
output_shape
({
bs
,
oc
});
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
const
int
dkernel
=
dilations
[
i
]
*
(
filter_dims
[
2
+
i
]
-
1
)
+
1
;
output_shape
.
push_back
(
(
input_dims
[
i
+
2
]
+
paddings
[
2
*
i
]
+
paddings
[
2
*
i
+
1
]
-
dkernel
)
/
strides
[
i
]
+
1
);
}
const
auto
output_shape_nhwc
=
DimNCHW2NHWC
(
output_shape
);
const
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output_shape_nhwc
,
CNML_TENSOR
,
CNML_NHWC
,
graph
->
FPType
());
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<::
paddle
::
lite
::
Tensor
>
()
->
Resize
(
output_shape_nhwc
);
const
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output_shape
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
// Create filter node
const
auto
filter_tensor
=
graph
->
AddNode
(
filter_var_name
,
...
...
@@ -156,7 +141,7 @@ int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
const
auto
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
bool
use_first_conv
=
false
;
if
(
lite
::
DeviceInfo
::
Global
().
UseFirstConv
()
&&
input_dims
_nhwc
[
3
]
==
3
)
{
if
(
lite
::
DeviceInfo
::
Global
().
UseFirstConv
()
&&
input_dims
[
1
]
==
3
)
{
use_first_conv
=
true
;
}
...
...
lite/kernels/mlu/bridges/elementwise_ops.cc
浏览文件 @
124b097a
...
...
@@ -77,7 +77,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
x
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_N
HWC
,
CNML_N
CHW
,
graph
->
FPType
());
cnmlBaseOp_t
elementwise_op
;
...
...
@@ -90,7 +90,7 @@ int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
mid_tensor
=
graph
->
AddNode
(
out_var_name
+
"_mid"
,
x
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_N
HWC
,
CNML_N
CHW
,
graph
->
FPType
());
CNML_CALL
(
cnmlCreateBroadcastAddOp
(
&
elementwise_op
,
x_tensor
->
mlu_tensor
(),
...
...
lite/kernels/mlu/bridges/fc_op.cc
浏览文件 @
124b097a
...
...
@@ -37,6 +37,7 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// int in_num_col_dims = op_info->GetAttr<int>("in_num_col_dims");
auto
x
=
scope
->
FindVar
(
x_var_name
)
->
GetMutable
<
Tensor
>
();
auto
w
=
scope
->
FindVar
(
w_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output
=
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<
Tensor
>
();
auto
x_dims
=
x
->
dims
();
auto
w_dims
=
w
->
dims
();
...
...
@@ -50,15 +51,11 @@ int FCConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
input_scale
=
op_info
->
GetAttr
<
float
>
(
"input_scale"
);
std
::
vector
<
int64_t
>
output_shape_nhwc
({
x_dims
[
0
],
1
,
1
,
w_dims
[
1
]});
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output
_shape_nhwc
,
output
->
dims
().
Vectorize
()
,
CNML_TENSOR
,
CNML_N
HWC
,
CNML_N
CHW
,
graph
->
FPType
());
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<::
paddle
::
lite
::
Tensor
>
()
->
Resize
(
output_shape_nhwc
);
std
::
string
bias_var_name
;
std
::
shared_ptr
<
MLUTensor
>
bias_tensor
;
...
...
lite/kernels/mlu/bridges/graph.cc
浏览文件 @
124b097a
...
...
@@ -25,12 +25,12 @@ namespace mlu {
std
::
shared_ptr
<
MLUTensor
>
Graph
::
AddNode
(
const
std
::
string
&
name
,
std
::
vector
<
int64_t
>
shape
,
cnmlTensorType_t
tensor_type
,
cnmlDataOrder_t
data
_order
,
cnmlDataOrder_t
shape
_order
,
cnmlDataType_t
mlu_dtype
,
void
*
raw_ptr
)
{
CHECK
(
!
HasNode
(
name
));
auto
node
=
std
::
shared_ptr
<
MLUTensor
>
(
new
MLUTensor
(
shape
,
tensor_type
,
data
_order
,
mlu_dtype
));
new
MLUTensor
(
shape
,
tensor_type
,
shape
_order
,
mlu_dtype
));
node
->
set_mlu_ptr
(
raw_ptr
);
nodes_
.
insert
(
std
::
make_pair
(
name
,
node
));
return
node
;
...
...
lite/kernels/mlu/bridges/interpolate_op.cc
浏览文件 @
124b097a
...
...
@@ -45,8 +45,8 @@ int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
auto
in_h
=
x_dims
[
1
];
auto
in_w
=
x_dims
[
2
];
auto
in_h
=
x_dims
[
2
];
auto
in_w
=
x_dims
[
3
];
// Priority: SizeTensor > OutSize > Scale > scale > out_h/out_w
if
(
HasInputArg
(
op_info
,
scope
,
"SizeTensor"
))
{
...
...
@@ -69,25 +69,13 @@ int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
}
}
out
->
Resize
({
x_dims
[
0
],
out_h
,
out_w
,
x_dims
[
3
]});
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
out
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_N
HWC
,
CNML_N
CHW
,
graph
->
FPType
());
cnmlBaseOp_t
interp_op
;
/* if (interp_method == "bilinear") { */
/* cnmlInterpOpParam_t interp_param; */
/* CNML_CALL(cnmlCreateInterpOpParam(&interp_param, out_w, out_h,
* align_corners)); */
/* CNML_CALL(cnmlCreateInterpOp(&interp_op, */
/* input_tensor->mlu_tensor(), */
/* output_tensor->mlu_tensor(), */
/* interp_param)); */
/* CNML_CALL(cnmlDestroyInterpOpParam(&interp_param)); */
/* } else if (interp_method == "nearest") { */
cnmlNearestNeighborOpParam_t
nn_param
;
CNML_CALL
(
cnmlCreateNearestNeighborOpParam
(
&
nn_param
,
out_w
,
out_h
));
CNML_CALL
(
cnmlSetNearestNeighborAlignCorner
(
&
nn_param
,
align_corners
));
...
...
@@ -96,11 +84,6 @@ int InterpolateConverter(void* ctx, OpLite* op, KernelBase* kernel) {
output_tensor
->
mlu_tensor
(),
nn_param
));
CNML_CALL
(
cnmlDestroyNearestNeighborOpParam
(
&
nn_param
));
/* } else { */
/* LOG(WARNING) << "[MLU] Unsupported interpolate method: " <<
* interp_method; */
/* return FAILED; */
/* } */
graph
->
FuseOp
(
interp_op
);
return
SUCCESS
;
...
...
lite/kernels/mlu/bridges/pool_op.cc
浏览文件 @
124b097a
...
...
@@ -47,9 +47,8 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
// Get input, and attributes
auto
x_var_name
=
op_info
->
Input
(
"X"
).
front
();
auto
x
=
scope
->
FindTensor
(
x_var_name
);
auto
input_dims_nhwc
=
x
->
dims
();
const
auto
input_dims
=
DimNHWC2NCHW
(
input_dims_nhwc
);
auto
output_var_name
=
op_info
->
Output
(
"Out"
).
front
();
auto
output_shape
=
scope
->
FindTensor
(
output_var_name
)
->
dims
().
Vectorize
();
auto
pooling_type
=
op_info
->
GetAttr
<
std
::
string
>
(
"pooling_type"
);
auto
ceil_mode
=
op_info
->
GetAttr
<
bool
>
(
"ceil_mode"
);
auto
paddings
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -81,23 +80,17 @@ int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
strides
,
ksize
);
std
::
vector
<
int64_t
>
output_shape
({
input_dims
[
0
],
input_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
output_shape
.
push_back
(
(
input_dims
[
i
+
2
]
+
paddings
[
2
*
i
]
+
paddings
[
2
*
i
+
1
]
-
ksize
[
0
])
/
strides
[
i
]
+
1
);
}
// std::vector<int64_t> output_shape({input_dims[0], input_dims[1]});
// for (size_t i = 0; i < 2; i++) {
// output_shape.push_back(
// (input_dims[i + 2] + paddings[2 * i] + paddings[2 * i + 1] -
// ksize[0]) /
// strides[i] +
// 1);
// }
auto
output_shape_nhwc
=
DimNCHW2NHWC
(
output_shape
);
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output_shape_nhwc
,
CNML_TENSOR
,
CNML_NHWC
,
graph
->
FPType
());
scope
->
FindVar
(
output_var_name
)
->
GetMutable
<::
paddle
::
lite
::
Tensor
>
()
->
Resize
(
output_shape_nhwc
);
auto
output_tensor
=
graph
->
AddNode
(
output_var_name
,
output_shape
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
cnmlPoolOpParam_t
pool_param
;
CNML_CALL
(
...
...
lite/kernels/mlu/bridges/scale_op.cc
浏览文件 @
124b097a
...
...
@@ -36,7 +36,7 @@ int ScaleConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
output
=
scope
->
FindVar
(
out_var_name
)
->
GetMutable
<
Tensor
>
();
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
HWC
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
CHW
,
graph
->
FPType
());
auto
bias_after_scale
=
op_info
->
GetAttr
<
bool
>
(
"bias_after_scale"
);
auto
scale
=
op_info
->
GetAttr
<
float
>
(
"scale"
);
auto
bias
=
op_info
->
GetAttr
<
float
>
(
"bias"
);
...
...
lite/kernels/mlu/bridges/softmax_op.cc
浏览文件 @
124b097a
...
...
@@ -45,11 +45,10 @@ int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
axis
=
output_dims
.
size
()
+
axis
;
}
}
int
nhwc_axis
=
nchw_to_nhwc_aixs_map
[
axis
];
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
HWC
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_N
CHW
,
graph
->
FPType
());
cnmlBaseOp_t
softmax_op
;
CNML_CALL
(
cnmlCreateNdSoftmaxOp
(
&
softmax_op
,
nhwc_axis
,
...
...
lite/kernels/mlu/bridges/transpose_op.cc
浏览文件 @
124b097a
...
...
@@ -21,8 +21,30 @@ namespace lite {
namespace
subgraph
{
namespace
mlu
{
std
::
vector
<
int
>
axis_to_nhwc4d
(
const
std
::
vector
<
int
>&
axis
)
{
CHECK_EQ
(
axis
.
size
(),
4
);
// std::vector<int> axis_to_nhwc4d(const std::vector<int>& axis) {
// CHECK_EQ(axis.size(), 4);
// std::vector<int> new_axis(4, 0);
// const std::vector<int> axis_map1 = {0, 2, 3, 1};
// const std::vector<int> axis_map2 = {0, 3, 1, 2};
// for (size_t i = 0; i < new_axis.size(); ++i) {
// new_axis[i] = axis_map2[axis[axis_map1[i]]];
// }
// return new_axis;
//}
//
// std::vector<int> axis_to_nhw3d(const std::vector<int>& axis) {
// CHECK_EQ(axis.size(), 3);
// std::vector<int> new_axis(3, 0);
// const std::vector<int> axis_map = {0, 2, 1};
// for (size_t i = 0; i < new_axis.size(); ++i) {
// new_axis[i] = axis_map[axis[axis_map[i]]];
// }
// new_axis.push_back(3);
// return new_axis;
//}
std
::
vector
<
int
>
axis_to_nhwc
(
const
std
::
vector
<
int
>&
axis
)
{
CHECK_EQ
(
axis
.
size
(),
4
)
<<
"Unsupport dim in mlu transpose"
;
std
::
vector
<
int
>
new_axis
(
4
,
0
);
const
std
::
vector
<
int
>
axis_map1
=
{
0
,
2
,
3
,
1
};
const
std
::
vector
<
int
>
axis_map2
=
{
0
,
3
,
1
,
2
};
...
...
@@ -32,26 +54,6 @@ std::vector<int> axis_to_nhwc4d(const std::vector<int>& axis) {
return
new_axis
;
}
std
::
vector
<
int
>
axis_to_nhw3d
(
const
std
::
vector
<
int
>&
axis
)
{
CHECK_EQ
(
axis
.
size
(),
3
);
std
::
vector
<
int
>
new_axis
(
3
,
0
);
const
std
::
vector
<
int
>
axis_map
=
{
0
,
2
,
1
};
for
(
size_t
i
=
0
;
i
<
new_axis
.
size
();
++
i
)
{
new_axis
[
i
]
=
axis_map
[
axis
[
axis_map
[
i
]]];
}
new_axis
.
push_back
(
3
);
return
new_axis
;
}
std
::
vector
<
int64_t
>
infer_shape
(
const
std
::
vector
<
int64_t
>&
x_dims
,
const
std
::
vector
<
int
>&
axis_nhwc
)
{
std
::
vector
<
int64_t
>
out_dims
(
x_dims
);
for
(
size_t
i
=
0
;
i
<
out_dims
.
size
();
++
i
)
{
out_dims
[
i
]
=
x_dims
[
axis_nhwc
[
i
]];
}
return
out_dims
;
}
int
TransposeConverter
(
void
*
ctx
,
OpLite
*
op
,
KernelBase
*
kernel
)
{
CHECK
(
ctx
!=
nullptr
);
CHECK
(
op
!=
nullptr
);
...
...
@@ -71,21 +73,13 @@ int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
auto
output_dims
=
output
->
dims
().
Vectorize
();
auto
axis
=
op_info
->
GetAttr
<
std
::
vector
<
int
>>
(
"axis"
);
std
::
vector
<
int
>
axis_nhwc
;
if
(
axis
.
size
()
==
4
)
{
axis_nhwc
=
axis_to_nhwc4d
(
axis
);
}
else
if
(
axis
.
size
()
==
3
)
{
axis_nhwc
=
axis_to_nhw3d
(
axis
);
}
else
{
CHECK
(
0
)
<<
"Unsupport dim in mlu transpose"
;
while
(
axis
.
size
()
<
4
)
{
axis
.
push_back
(
axis
.
size
());
}
auto
output_dims_nhwc
=
infer_shape
(
x_dims
,
axis_nhwc
);
output
->
Resize
(
output_dims_nhwc
);
std
::
vector
<
int
>
axis_nhwc
=
axis_to_nhwc
(
axis
);
auto
output_tensor
=
graph
->
AddNode
(
out_var_name
,
output_dims
_nhwc
,
CNML_TENSOR
,
CNML_NHWC
,
graph
->
FPType
());
out_var_name
,
output_dims
,
CNML_TENSOR
,
CNML_NCHW
,
graph
->
FPType
());
CHECK
(
graph
->
HasNode
(
x_var_name
));
auto
input_tensor
=
graph
->
GetNode
(
x_var_name
);
...
...
@@ -113,7 +107,6 @@ int TransposeConverter(void* ctx, OpLite* op, KernelBase* kernel) {
REGISTER_SUBGRAPH_BRIDGE
(
transpose
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
TransposeConverter
);
REGISTER_SUBGRAPH_BRIDGE
(
transpose2
,
kMLU
,
paddle
::
lite
::
subgraph
::
mlu
::
TransposeConverter
);
lite/kernels/mlu/layout_compute.h
浏览文件 @
124b097a
...
...
@@ -67,6 +67,8 @@ class LayoutNchwToNhwcCompute
auto
x_dims
=
param
.
x
->
dims
().
size
();
auto
&
context
=
this
->
ctx_
->
template
As
<
X86Context
>();
const
auto
origin_dims
=
out
->
dims
().
Vectorize
();
std
::
vector
<
int
>
axis
;
switch
(
x_dims
)
{
case
2
:
...
...
@@ -88,6 +90,10 @@ class LayoutNchwToNhwcCompute
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
float
>
(
x_dims
,
context
,
*
x
,
out
,
axis
);
if
(
x_dims
>
2
)
{
out
->
Resize
(
origin_dims
);
}
}
std
::
string
doc
()
const
override
{
...
...
@@ -109,20 +115,22 @@ class LayoutNhwcToNchwCompute
auto
x_dims
=
param
.
x
->
dims
().
size
();
auto
&
context
=
this
->
ctx_
->
template
As
<
X86Context
>();
const
auto
origin_dims
=
out
->
dims
().
Vectorize
();
std
::
vector
<
int
>
axis
;
switch
(
x_dims
)
{
case
2
:
axis
=
{
0
,
1
};
break
;
case
3
:
axis
=
{
0
,
2
,
1
};
out
->
Resize
(
std
::
vector
<
int64_t
>
{
out
->
dims
()[
0
],
out
->
dims
()[
2
],
out
->
dims
()[
1
]});
axis
=
{
0
,
2
,
1
};
break
;
case
4
:
axis
=
{
0
,
3
,
1
,
2
};
out
->
Resize
(
std
::
vector
<
int64_t
>
{
out
->
dims
()[
0
],
out
->
dims
()[
3
],
out
->
dims
()[
1
],
out
->
dims
()[
2
]});
axis
=
{
0
,
3
,
1
,
2
};
break
;
default:
CHECK
(
0
)
<<
"Unsupport dim in mlu layout nhwc to nchw"
;
...
...
@@ -130,6 +138,10 @@ class LayoutNhwcToNchwCompute
LayoutTransCompute
<
lite
::
TargetType
::
kX86
,
float
>
(
x_dims
,
context
,
*
x
,
out
,
axis
);
if
(
x_dims
>
2
)
{
out
->
Resize
(
origin_dims
);
}
}
std
::
string
doc
()
const
override
{
...
...
lite/kernels/mlu/subgraph_compute.h
浏览文件 @
124b097a
...
...
@@ -83,7 +83,7 @@ class SubgraphEngine : public subgraph::Engine {
graph_
.
AddNode
(
input_name
,
input_tensor
->
dims
().
Vectorize
(),
CNML_TENSOR
,
CNML_N
HWC
,
CNML_N
CHW
,
graph_
.
FPType
(),
const_cast
<
void
*>
(
input_tensor
->
raw_data
()));
CHECK
(
input_node
);
...
...
@@ -99,9 +99,7 @@ class SubgraphEngine : public subgraph::Engine {
CHECK
(
op
);
std
::
string
op_type
=
op
->
op_info
()
->
Type
();
op
->
CheckShape
();
if
(
op_type
!=
"concat"
)
{
op
->
InferShape
();
}
op
->
InferShape
();
if
(
!
bridges
.
Exists
(
op_type
,
TARGET
(
kMLU
)))
{
LOG
(
INFO
)
<<
"MLU bridges doesn't support op_type: "
<<
op_type
;
return
subgraph
::
FAILED
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录