subgraph_compute.h 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <vector>
#include "lite/api/paddle_place.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"
#include "lite/core/types.h"
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/npu/bridges/engine.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace mlu {

template <PrecisionType Precision>
class SubgraphEngine : public subgraph::Engine {
 public:
  SubgraphEngine(KernelContext* ctx,
                 int block_idx,
                 cpp::BlockDesc* block_desc,
                 const std::vector<std::string>& input_names,
                 const std::vector<std::string>& output_names,
                 Scope* scope,
                 ::paddle::lite_api::PrecisionType type)
      : subgraph::Engine(
            ctx, block_idx, block_desc, input_names, output_names, scope) {
    graph_.SetFPType(type);
  }

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  int Build() {
    // In order to attach all of the ops of the block desc, we need to build
    // the original program firstly.
    BuildOriginProgram();
    // Run InferShape() of all of ops, and convert Paddle ops to MLU IR graph
    build_device_program_status_ = BuildDeviceProgram();
    return build_device_program_status_;
  }

  int Launch() {
    // Rebuild device program when the shapes of input tensors have been
    // changed.
    if (subgraph::CHECK_SUCCESS(build_device_program_status_) &&
        subgraph::CHECK_REBUILD_WHEN_SHAPE_CHANGED(
            build_device_program_status_) &&
        InputShapeChanged()) {
      Build();
    }
    if (subgraph::CHECK_FAILED(build_device_program_status_)) {
      LaunchOriginProgram();
    } else {
      LaunchDeviceProgram();
    }
    return 0;
  }

75 76 77 78 79 80 81 82 83 84 85
 protected:
  int BuildDeviceProgram() override {
    int status = 0;
    // Convert all of input data vars and added into the MLU IR graph
    for (auto& input_name : input_names_) {
      auto input_tensor = scope_->FindMutableTensor(input_name);
      CHECK(input_tensor);
      auto input_node =
          graph_.AddNode(input_name,
                         input_tensor->dims().Vectorize(),
                         CNML_TENSOR,
86
                         CNML_NCHW,
87 88 89 90 91 92 93 94 95 96 97 98 99 100
                         graph_.FPType(),
                         const_cast<void*>(input_tensor->raw_data()));
      CHECK(input_node);
      // MLU doesn't support dynamic dimensions/shapes, so need to rebuild
      // the program when the shape of any input tensor is changed.
      status |= subgraph::REBUILD_WHEN_SHAPE_CHANGED;
    }
    LOG(INFO) << "START TO CONVERT ";
    // Convert all of ops and its weights and added into the MLU IR graph
    const auto& bridges = subgraph::Registry::Instance();
    for (auto& inst : origin_program_) {
      auto op = inst.op();
      CHECK(op);
      std::string op_type = op->op_info()->Type();
101
      op->CheckShape();
102
      op->InferShape();
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      if (!bridges.Exists(op_type, TARGET(kMLU))) {
        LOG(INFO) << "MLU bridges doesn't support op_type: " << op_type;
        return subgraph::FAILED;
      }
      auto kernel = inst.kernel();
      status |= bridges.Select(op_type, TARGET(kMLU))(
          reinterpret_cast<void*>(&graph_),
          const_cast<OpLite*>(op),
          const_cast<KernelBase*>(kernel));
      if (subgraph::CHECK_FAILED(status)) {
        return subgraph::FAILED;
      }
    }
    // Obtain the output nodes of the MLU IR graph and build the graph to MLU
    // runtime
    std::vector<std::string> valid_output_names;
    for (auto& output_name : output_names_) {
      if (graph_.HasNode(output_name)) {
        graph_.AddOutput(graph_.GetNode(output_name));
        auto output_tensor = scope_->FindMutableTensor(output_name);
        void* p_data = static_cast<void*>(
            output_tensor->mutable_data<typename ::paddle::lite::subgraph::mlu::
                                            FPTypeTraits<Precision>::T>(
                TARGET(kMLU)));
        auto node = graph_.GetNode(output_name);
        CHECK(p_data);
        node->set_mlu_ptr(p_data);
        valid_output_names.push_back(output_name);
      }
    }
    for (auto& input_name : input_names_) {
      graph_.AddInput(graph_.GetNode(input_name));
    }
    CHECK(!valid_output_names.empty()) << "[MLU] no valid output names";
137 138 139 140
    auto& mlu_context = this->ctx_->template As<MLUContext>();
    auto core_version = mlu_context.MLUCoreVersion();
    auto core_number = mlu_context.MLUCoreNumber();
    graph_.Compile(core_version, core_number);
141 142 143 144
    return status;
  }

  int LaunchDeviceProgram() override {
145 146 147 148 149 150 151 152 153
    auto& mlu_context = this->ctx_->template As<MLUContext>();
    auto exec_queue = mlu_context.exec_queue();
    u32_t affinity = mlu_context.affinity();
    cnrtInvokeFuncParam_t forward_param = mlu_context.forward_param();
    int data_param = 1;
    forward_param.data_parallelism = &data_param;
    forward_param.affinity = &affinity;
    forward_param.end = CNRT_PARAM_END;
    graph_.Compute(forward_param, exec_queue);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    return 0;
  }

  paddle::lite::subgraph::mlu::Graph graph_;
};

template <PrecisionType Precision>
class SubgraphCompute
    : public KernelLite<TARGET(kMLU), Precision, DATALAYOUT(kNHWC)> {
 public:
  using param_t = operators::SubgraphParam;

  void PrepareForRun() override {
    auto& param = this->template Param<param_t>();
    // LOG(INFO) << "SUBGRAP Prepare RUN index " << param.sub_block_idx;
    engine_.reset(new SubgraphEngine<Precision>(this->ctx_.get(),
                                                param.sub_block_idx,
                                                param.sub_block_desc,
                                                param.input_data_names,
                                                param.output_data_names,
                                                param.scope,
                                                this->precision()));
    CHECK(engine_);
    engine_->Build();
  }

  void Run() override {
    CHECK(engine_);
    engine_->Launch();
  }

  virtual ~SubgraphCompute() = default;

 private:
  std::unique_ptr<SubgraphEngine<Precision>> engine_;
};

}  // namespace mlu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle