conv_image_compute.cc 51.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_image_compute.h"
16

Y
Yan Chunwei 已提交
17
#include <sstream>
18 19

#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  float* filter_cpu = param.filter->mutable_data<float>();
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
       (paddings[2] == paddings[3]));
  bool stride_equal = stride_h == stride_w;
  bool dilation_equal = dilations[0] == dilations[1];

  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
71
  VLOG(3) << "dialtion:" << dilations[0] << " " << dilations[1];
72 73 74 75
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];
76 77 78 79 80 81 82
  VLOG(3) << "pad_equal:" << pad_equal;
  VLOG(3) << "stride_equal:" << stride_equal;
  VLOG(3) << "dilation_equal:" << dilation_equal;
  VLOG(3) << "padding :" << paddings[0] << " " << paddings[1] << " "
          << paddings[2] << " " << paddings[3];
  CHECK(pad_equal && stride_equal && dilation_equal);

83 84 85 86 87 88 89 90 91 92 93
  if (kernel_h == 1 && kernel_w == 1) {
    // conv2d_1x1
    if (param.x->dims()[1] % 4 == 0) {
      kernel_func_names_.push_back("conv2d_1x1_simple");
    } else {
      kernel_func_names_.push_back("conv2d_1x1");
    }
    kernel_func_paths_.push_back("image/conv2d_1x1_kernel.cl");

    CLImageConverterNWBlock converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
94 95
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
96
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
97
    filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
98 99 100
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d1x1;
101
#define DEPTH_CONV_USE_SPL
102
#ifdef DEPTH_CONV_USE_SPL
103 104 105 106 107 108 109 110 111 112 113 114
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1] &&
             kernel_h == 3 && kernel_w == 3 && groups > 1) {
    // depth_conv2d_3x3s1, depth_conv2d_3x3
    if (stride_h == 1 && dilations[0] == 1) {
      kernel_func_names_.push_back("depth_conv2d_3x3s1");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3s1;
    } else {
      kernel_func_names_.push_back("depth_conv2d_3x3");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3;
    }
    kernel_func_paths_.push_back("image/depthwise_conv2d_kernel.cl");

115
    CLImageConverterNWBlock converter;
116
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
117 118
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
119
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
120
    filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
121
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
122 123 124 125 126 127 128

#endif
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1]
#ifdef DEPTH_CONV_USE_SPL
             &&
             kernel_h != 3
#endif
129
#undef DEPTH_CONV_USE_SPL
130
             ) {
131 132 133 134
    // depth_conv2d
    kernel_func_names_.push_back("depth_conv2d");
    kernel_func_paths_.push_back("image/depthwise_conv2d_basic_kernel.cl");

135
    CLImageConverterNWBlock converter;
136
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
137 138
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
139
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
140
    filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
141 142 143
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::DepthwiseConv2d;
144 145
  } else if (kernel_h == 3 && kernel_h == 3) {
    // conv2d_3x3
146
    kernel_func_names_.push_back("conv2d_3x3_opt");
147
    kernel_func_paths_.push_back("image/conv2d_3x3_opt_kernel.cl");
148 149 150

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
151 152
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
153
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
154
    filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
155 156
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

157
    impl_ = &ConvImageCompute::Conv2d3x3opt;
158 159 160 161 162 163 164
  } else if (kernel_h == 5 && kernel_w == 5) {
    // conv2d_5x5
    kernel_func_names_.push_back("conv2d_5x5");
    kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
165 166
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
167
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
168
    filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
169 170 171 172 173 174 175 176 177 178
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d5x5;
  } else if (kernel_h == 7 && kernel_w == 7) {
    // conv2d_7x7
    kernel_func_names_.push_back("conv2d_7x7");
    kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
179 180
    std::vector<half_t> filter_image_v(filter_image_dims[0] *
                                       filter_image_dims[1] * 4);  // 4 : RGBA
181
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
182
    this->filter_gpu_image_.mutable_data<half_t, cl::Image2D>(
183 184 185 186 187 188
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d7x7;
  } else {
    LOG(FATAL) << "conv image compute not support this condition yet! ";
  }
189 190
  VLOG(1) << "kernel_func_names_[0]:" << kernel_func_names_[0]
          << " kernel_func_paths_[0]:" << kernel_func_paths_[0];
191

192
  std::string build_options_single(" -DCL_DTYPE_half");
193 194 195 196 197 198 199
  // relu options
  if (relu_fused) {
    build_options_single += " -DRELU";
  } else if (param.activation_param.active_type ==
             lite_api::ActivationType::kRelu6) {
    build_options_single += " -DRELU6";
  } else {
200
    // do nothing, may add more activation fuse
201 202 203 204 205 206 207 208 209 210 211 212 213
  }
  // bias options
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  if (has_bias) {
    build_options_single +=
        is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";

    // convert cpu buffer bias --> gpu image
    CLImageConverterFolder bias_converter;
    const DDim& bias_image_dims =
        bias_converter.InitImageDimInfoWith(param.bias->dims());
214 215
    std::vector<half_t> bias_image_v(bias_image_dims[0] * bias_image_dims[1] *
                                     4);
216 217 218
    float* bias_cpu_data = param.bias->mutable_data<float>();
    bias_converter.NCHWToImage(
        bias_cpu_data, bias_image_v.data(), param.bias->dims());
219
    this->bias_gpu_image_.mutable_data<half_t, cl::Image2D>(
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        bias_image_dims[0], bias_image_dims[1], bias_image_v.data());
    // convert cpu buffer bias --> gpu image --- end ----
  }

  build_options_.push_back(build_options_single);

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvImageCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
237 238
  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
239 240 241 242 243 244 245 246
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
247
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d_1x1 params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
277
  //  VLOG(4) << "input_image: " << input_image;
278
  VLOG(4) << "filter_dims: " << filter_dims;
279
  //  VLOG(4) << "filter_image: " << filter_image;
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
306
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  int maped_w = maptofactor(w, 4);

  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "maped_w: " << maped_w;
  VLOG(4) << "hasbias: " << has_bias;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, maped_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(maped_w),
                  static_cast<size_t>(default_work_size.data()[2])};

366
  //  VLOG(4) << "out_image: " << out_image;
367 368 369 370 371 372 373 374 375 376 377 378 379
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
380 381 382 383 384 385 386

void ConvImageCompute::Conv2d3x3() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;

387 388
  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
389 390 391 392 393 394 395 396 397 398 399 400 401
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  int filter_channel = filter_dims[1];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
402
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  // re-calc group
  int new_groups{param.groups};
  if (filter_dims[0] == output_dims[1] && filter_dims[1] == input_dims[1]) {
    new_groups = 1;
  } else if (!(filter_dims[0] == input_dims[1] && filter_dims[1] == 1)) {
    new_groups = input_channel / filter_channel;
  }
  /* TODO(ysh329): mobile has no case below
     else {
      LOG(FATAL) << "Not support conv3x3 case with"
                 << " input_dims:" << input_dims << " output_dims:" <<
    output_dims
                 << " filter_dims:" << filter_dims;
    }
  */

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
448
  //  VLOG(4) << "input_image: " << input_image;
449 450
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
451
  //  VLOG(4) << "filter_image: " << filter_image;
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "param.groups(groups):" << param.groups;
  VLOG(4) << "new_groups:" << new_groups;
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
478
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, new_groups);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

543
  //  VLOG(4) << "out_image: " << out_image;
544 545 546
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

void ConvImageCompute::Conv2d3x3opt() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];

  auto out_image_shape = InitImageDimInfoWith(output_dims);
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  int w_blk_size = 5;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;
  // default_work_size[1] = w_blk;

  int h_blk_size = 1;
  int h_blk = (nh + h_blk_size - 1) / h_blk_size;
  // default_work_size[2] = h_blk;

  VLOG(4) << "============ conv2d params ============";
  // VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
  //         << input_image_shape["height"];
  //  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  //  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w_blk);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, h_blk);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, paddings[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(w_blk),
                  static_cast<size_t>(h_blk)};

  //  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

691 692 693 694 695 696 697 698 699 700 701
  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

702 703 704 705 706
void ConvImageCompute::Conv2d5x5() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
707 708
  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
709 710 711 712 713 714 715 716 717 718
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
719
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
749
  //  VLOG(4) << "input_image: " << input_image;
750 751
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
752
  //  VLOG(4) << "filter_image: " << filter_image;
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
777
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

832
  //  VLOG(4) << "out_image: " << out_image;
833 834 835 836 837 838 839 840 841 842 843 844 845
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
846

847 848 849 850 851
void ConvImageCompute::Conv2d7x7() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
852 853
  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
854 855 856 857 858 859 860 861 862 863
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
864
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
894
  //  VLOG(4) << "input_image: " << input_image;
895 896
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
897
  //  VLOG(4) << "filter_image: " << filter_image;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
922
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

977
  //  VLOG(4) << "out_image: " << out_image;
978 979 980 981 982 983 984 985 986 987 988 989 990 991
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

992 993 994 995 996 997 998 999 1000 1001 1002
void ConvImageCompute::DepthwiseConv2d3x3s1() {
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1003 1004
  auto* input_img = param.x->data<half_t, cl::Image2D>();
  auto* filter_img = filter_gpu_image_.data<half_t, cl::Image2D>();
1005 1006 1007

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1008
    bias_img = bias_gpu_image_.data<half_t, cl::Image2D>();
1009 1010 1011 1012
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1013
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
      image_shape["width"], image_shape["height"]);

  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int c_block = (output_dims[1] + 3) / 4;
  int w = output_dims[3];
  int nh = output_dims[0] * output_dims[2];

  int w_blk_size = 2;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;

  auto global_work_size = cl::NDRange(c_block, w_blk, nh);

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(w_blk));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
}

void ConvImageCompute::DepthwiseConv2d3x3() {
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;
  int offset = filter_dims[2] / 2 - paddings[0];
  int input_c_block = (x_dims[1] + 3) / 4;

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
1095 1096
  auto* input_img = param.x->data<half_t, cl::Image2D>();
  auto* filter_img = filter_gpu_image_.data<half_t, cl::Image2D>();
1097 1098 1099

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
1100
    bias_img = bias_gpu_image_.data<half_t, cl::Image2D>();
1101 1102 1103 1104
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

1105
  auto* output_img = param.output->mutable_data<half_t, cl::Image2D>(
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
      image_shape["width"], image_shape["height"]);

  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int c_block = (output_dims[1] + 3) / 4;
  int w = output_dims[3];
  int nh = output_dims[0] * output_dims[2];
  auto global_work_size = cl::NDRange(c_block, w, nh);

  VLOG(4) << "setArg";
  VLOG(4) << "c_block = " << c_block;
  VLOG(4) << "w = " << w;
  VLOG(4) << "nh = " << nh;

  VLOG(4) << "strides = " << strides[0];
  VLOG(4) << "offset = " << offset;
  VLOG(4) << "dilations = " << dilations[0];
  VLOG(4) << "input_c_block = " << input_c_block;
  VLOG(4) << "x_dims[3] = " << x_dims[3];
  VLOG(4) << "x_dims[2] = " << x_dims[2];
  VLOG(4) << "output_dims[3] = " << output_dims[3];
  VLOG(4) << "output_dims[2] = " << output_dims[2];

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(w));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
}

void ConvImageCompute::DepthwiseConv2d() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1188 1189
  auto* input_image = param.x->data<half_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<half_t, cl::Image2D>();
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1200
  auto* out_image = param.output->mutable_data<half_t, cl::Image2D>(
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ depthwise conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
1230
  //  VLOG(4) << "input_image: " << input_image;
1231
  VLOG(4) << "filter_dims: " << filter_dims;
1232
  //  VLOG(4) << "filter_image: " << filter_image;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1259
    bias_image = bias_gpu_image_.data<half_t, cl::Image2D>();
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

1318
  //  VLOG(4) << "out_image: " << out_image;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

1333 1334
void ConvImageCompute::Run() { (this->*impl_)(); }

Y
Yan Chunwei 已提交
1335 1336 1337 1338 1339 1340 1341
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
1342
                     kFP16,
1343 1344 1345 1346 1347
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1348
                                      PRECISION(kFP16),
1349 1350 1351 1352 1353
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1354
                                       PRECISION(kFP16),
1355
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
1356
    .Finalize();
1357

1358
REGISTER_LITE_KERNEL(depthwise_conv2d,
1359
                     kOpenCL,
1360
                     kFP16,
1361 1362 1363 1364 1365
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1366
                                      PRECISION(kFP16),
1367 1368 1369 1370 1371
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1372
                                       PRECISION(kFP16),
1373 1374
                                       DATALAYOUT(kImageDefault))})
    .Finalize();