conv_image_compute.cc 45.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/opencl/conv_image_compute.h"
16

Y
Yan Chunwei 已提交
17
#include <sstream>
18 19

#include "lite/backends/opencl/cl_image_converter.h"
20
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
21
#include "lite/core/op_registry.h"
22
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
23 24 25 26 27 28 29
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* image kernel*/
void ConvImageCompute::PrepareForRun() {
  const auto& param = this->Param<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  float* filter_cpu = param.filter->mutable_data<float>();
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  int bs = x_dims[0];
  int c_in = x_dims[1];
  int h_out = output_dims[2];
  int w_out = output_dims[3];
  int kernel_h = filter_dims[2];  // oihw
  int kernel_w = filter_dims[3];
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int pad_h = paddings[0];
  int pad_w = paddings[2];
  int groups = param.groups;
  bool relu_fused = param.fuse_relu;
  bool no_dilation = (dilations[0] == 1) && (dilations[1] == 1);
  bool zero_pad = (pad_h == 0) && (pad_w == 0);

  bool pad_equal =
      ((paddings[0] == paddings[1]) && (paddings[1] == paddings[2]) &&
       (paddings[2] == paddings[3]));
  bool stride_equal = stride_h == stride_w;
  bool dilation_equal = dilations[0] == dilations[1];

  CHECK(pad_equal && stride_equal && dilation_equal);

  VLOG(3) << "Is relu fused? / " << (relu_fused ? "Yes" : "No");
  VLOG(3) << "groups:" << groups << " stride_h:" << stride_h
          << " stride_w:" << stride_w << " pad_h:" << pad_h
          << " pad_w:" << pad_w << " kernel_h:" << kernel_h
          << " kernel_h:" << kernel_h;
  VLOG(3) << "x_dims:" << x_dims[0] << " " << x_dims[1] << " " << x_dims[2]
          << " " << x_dims[3];
  VLOG(3) << "output_dims:" << output_dims[0] << " " << output_dims[1] << " "
          << output_dims[2] << " " << output_dims[3];
  VLOG(3) << "filter_dims:" << filter_dims[0] << " " << filter_dims[1] << " "
          << filter_dims[2] << " " << filter_dims[3];
  if (kernel_h == 1 && kernel_w == 1) {
    // conv2d_1x1
    if (param.x->dims()[1] % 4 == 0) {
      kernel_func_names_.push_back("conv2d_1x1_simple");
    } else {
      kernel_func_names_.push_back("conv2d_1x1");
    }
    kernel_func_paths_.push_back("image/conv2d_1x1_kernel.cl");

    CLImageConverterNWBlock converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
88 89
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
90
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
91
    filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
92 93 94
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d1x1;
95 96 97
#if 1  // TODO(ysh329): enable general dwconv
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1]) {
#else  // TODO(ysh329): remove dwconv3x3s1 and dwconv3x3 temporarily, need fix
98 99 100 101 102 103 104 105 106 107 108 109
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1] &&
             kernel_h == 3 && kernel_w == 3 && groups > 1) {
    // depth_conv2d_3x3s1, depth_conv2d_3x3
    if (stride_h == 1 && dilations[0] == 1) {
      kernel_func_names_.push_back("depth_conv2d_3x3s1");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3s1;
    } else {
      kernel_func_names_.push_back("depth_conv2d_3x3");
      impl_ = &ConvImageCompute::DepthwiseConv2d3x3;
    }
    kernel_func_paths_.push_back("image/depthwise_conv2d_kernel.cl");

110
    CLImageConverterNWBlock converter;
111
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
112 113
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
114
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
115
    filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
116 117
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());
  } else if (filter_dims[1] == 1 && x_dims[1] == output_dims[1] &&
118 119
             kernel_h != 3) {
#endif
120 121 122 123
    // depth_conv2d
    kernel_func_names_.push_back("depth_conv2d");
    kernel_func_paths_.push_back("image/depthwise_conv2d_basic_kernel.cl");

124
    CLImageConverterNWBlock converter;
125
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
126 127
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
128
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
129
    filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
130 131 132
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::DepthwiseConv2d;
133 134 135 136 137 138 139
  } else if (kernel_h == 3 && kernel_h == 3) {
    // conv2d_3x3
    kernel_func_names_.push_back("conv2d_3x3");
    kernel_func_paths_.push_back("image/conv2d_3x3_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
140 141
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
142
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
143
    filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
144 145 146
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d3x3;
147 148 149 150 151 152 153
  } else if (kernel_h == 5 && kernel_w == 5) {
    // conv2d_5x5
    kernel_func_names_.push_back("conv2d_5x5");
    kernel_func_paths_.push_back("image/conv2d_5x5_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
154 155
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
156
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
157
    filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
158 159 160 161 162 163 164 165 166 167
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d5x5;
  } else if (kernel_h == 7 && kernel_w == 7) {
    // conv2d_7x7
    kernel_func_names_.push_back("conv2d_7x7");
    kernel_func_paths_.push_back("image/conv2d_7x7_kernel.cl");

    CLImageConverterFolder converter;
    const DDim& filter_image_dims = converter.InitImageDimInfoWith(filter_dims);
168 169
    std::vector<uint16_t> filter_image_v(filter_image_dims[0] *
                                         filter_image_dims[1] * 4);  // 4 : RGBA
170
    converter.NCHWToImage(filter_cpu, filter_image_v.data(), filter_dims);
171
    this->filter_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
172 173 174 175 176 177
        filter_image_dims[0], filter_image_dims[1], filter_image_v.data());

    impl_ = &ConvImageCompute::Conv2d7x7;
  } else {
    LOG(FATAL) << "conv image compute not support this condition yet! ";
  }
178 179
  VLOG(1) << "kernel_func_names_[0]:" << kernel_func_names_[0]
          << " kernel_func_paths_[0]:" << kernel_func_paths_[0];
180

181
  std::string build_options_single(" -DCL_DTYPE_half");
182 183 184 185 186 187 188
  // relu options
  if (relu_fused) {
    build_options_single += " -DRELU";
  } else if (param.activation_param.active_type ==
             lite_api::ActivationType::kRelu6) {
    build_options_single += " -DRELU6";
  } else {
189
    // do nothing, may add more activation fuse
190 191 192 193 194 195 196 197 198 199 200 201 202
  }
  // bias options
  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  if (has_bias) {
    build_options_single +=
        is_element_wise_bias ? " -DBIASE_ELE" : " -DBIASE_CH";

    // convert cpu buffer bias --> gpu image
    CLImageConverterFolder bias_converter;
    const DDim& bias_image_dims =
        bias_converter.InitImageDimInfoWith(param.bias->dims());
203 204
    std::vector<uint16_t> bias_image_v(bias_image_dims[0] * bias_image_dims[1] *
                                       4);
205 206 207
    float* bias_cpu_data = param.bias->mutable_data<float>();
    bias_converter.NCHWToImage(
        bias_cpu_data, bias_image_v.data(), param.bias->dims());
208
    this->bias_gpu_image_.mutable_data<uint16_t, cl::Image2D>(
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        bias_image_dims[0], bias_image_dims[1], bias_image_v.data());
    // convert cpu buffer bias --> gpu image --- end ----
  }

  build_options_.push_back(build_options_single);

  for (size_t i = 0; i < kernel_func_names_.size(); i++) {
    context.cl_context()->AddKernel(
        kernel_func_names_[i], kernel_func_paths_[i], build_options_[i]);
  }
}

void ConvImageCompute::Conv2d1x1() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
226 227
  auto* input_image = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<uint16_t, cl::Image2D>();
228 229 230 231 232 233 234 235
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
236
  auto* out_image = param.output->mutable_data<uint16_t, cl::Image2D>(
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d_1x1 params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
295
    bias_image = bias_gpu_image_.data<uint16_t, cl::Image2D>();
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  std::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  int maped_w = maptofactor(w, 4);

  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "maped_w: " << maped_w;
  VLOG(4) << "hasbias: " << has_bias;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, maped_w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(maped_w),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
369 370 371 372 373 374 375

void ConvImageCompute::Conv2d3x3() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;

376 377
  auto* input_image = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<uint16_t, cl::Image2D>();
378 379 380 381 382 383 384 385 386 387 388 389 390
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int input_channel = input_dims[1];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int output_channel = output_dims[1];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  int filter_channel = filter_dims[1];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
391
  auto* out_image = param.output->mutable_data<uint16_t, cl::Image2D>(
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  // re-calc group
  int new_groups{param.groups};
  if (filter_dims[0] == output_dims[1] && filter_dims[1] == input_dims[1]) {
    new_groups = 1;
  } else if (!(filter_dims[0] == input_dims[1] && filter_dims[1] == 1)) {
    new_groups = input_channel / filter_channel;
  }
  /* TODO(ysh329): mobile has no case below
     else {
      LOG(FATAL) << "Not support conv3x3 case with"
                 << " input_dims:" << input_dims << " output_dims:" <<
    output_dims
                 << " filter_dims:" << filter_dims;
    }
  */

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "param.groups(groups):" << param.groups;
  VLOG(4) << "new_groups:" << new_groups;
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
467
    bias_image = bias_gpu_image_.data<uint16_t, cl::Image2D>();
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_channel);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, new_groups);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

547 548 549 550 551
void ConvImageCompute::Conv2d5x5() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
552 553
  auto* input_image = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<uint16_t, cl::Image2D>();
554 555 556 557 558 559 560 561 562 563
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
564
  auto* out_image = param.output->mutable_data<uint16_t, cl::Image2D>(
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
622
    bias_image = bias_gpu_image_.data<uint16_t, cl::Image2D>();
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}
691

692 693 694 695 696
void ConvImageCompute::Conv2d7x7() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
697 698
  auto* input_image = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<uint16_t, cl::Image2D>();
699 700 701 702 703 704 705 706 707 708
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
709
  auto* out_image = param.output->mutable_data<uint16_t, cl::Image2D>(
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "input_dims: " << input_dims;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
767
    bias_image = bias_gpu_image_.data<uint16_t, cl::Image2D>();
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

837 838 839 840 841 842 843 844 845 846 847
void ConvImageCompute::DepthwiseConv2d3x3s1() {
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
848 849
  auto* input_img = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_img = filter_gpu_image_.data<uint16_t, cl::Image2D>();
850 851 852

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
853
    bias_img = bias_gpu_image_.data<uint16_t, cl::Image2D>();
854 855 856 857
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

858
  auto* output_img = param.output->mutable_data<uint16_t, cl::Image2D>(
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
      image_shape["width"], image_shape["height"]);

  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int c_block = (output_dims[1] + 3) / 4;
  int w = output_dims[3];
  int nh = output_dims[0] * output_dims[2];

  int w_blk_size = 2;
  int w_blk = (w + w_blk_size - 1) / w_blk_size;

  auto global_work_size = cl::NDRange(c_block, w_blk, nh);

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(w_blk));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[1]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
}

void ConvImageCompute::DepthwiseConv2d3x3() {
  const auto& param = *param_.get_mutable<param_t>();
  auto x_dims = param.x->dims();
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
  auto dilations = *param.dilations;
  int offset = filter_dims[2] / 2 - paddings[0];
  int input_c_block = (x_dims[1] + 3) / 4;

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
929 930
  auto* input_img = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_img = filter_gpu_image_.data<uint16_t, cl::Image2D>();
931 932 933

  const cl::Image2D* bias_img = nullptr;
  if (param.bias) {
934
    bias_img = bias_gpu_image_.data<uint16_t, cl::Image2D>();
935 936 937 938
  }

  auto image_shape = InitImageDimInfoWith(output_dims);

939
  auto* output_img = param.output->mutable_data<uint16_t, cl::Image2D>(
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
      image_shape["width"], image_shape["height"]);

  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int c_block = (output_dims[1] + 3) / 4;
  int w = output_dims[3];
  int nh = output_dims[0] * output_dims[2];
  auto global_work_size = cl::NDRange(c_block, w, nh);

  VLOG(4) << "setArg";
  VLOG(4) << "c_block = " << c_block;
  VLOG(4) << "w = " << w;
  VLOG(4) << "nh = " << nh;

  VLOG(4) << "strides = " << strides[0];
  VLOG(4) << "offset = " << offset;
  VLOG(4) << "dilations = " << dilations[0];
  VLOG(4) << "input_c_block = " << input_c_block;
  VLOG(4) << "x_dims[3] = " << x_dims[3];
  VLOG(4) << "x_dims[2] = " << x_dims[2];
  VLOG(4) << "output_dims[3] = " << output_dims[3];
  VLOG(4) << "output_dims[2] = " << output_dims[2];

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, static_cast<const int>(c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(w));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(nh));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *output_img);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(offset));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(dilations[0]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(input_c_block));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
  CL_CHECK_FATAL(status);

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(output_img, event_);
}

void ConvImageCompute::DepthwiseConv2d() {
  const auto& param = *param_.get_mutable<param_t>();
  auto input_dims = param.x->dims();
  auto paddings = *param.paddings;
  auto strides = param.strides;
1012 1013
  auto* input_image = param.x->data<uint16_t, cl::Image2D>();
  auto* filter_image = filter_gpu_image_.data<uint16_t, cl::Image2D>();
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
  auto filter_dims = param.filter->dims();
  auto output_dims = param.output->dims();

  int input_width = input_dims[3];
  int input_height = input_dims[2];
  int output_width = output_dims[3];
  int output_height = output_dims[2];
  int filter_width = filter_dims[3];
  int filter_height = filter_dims[2];
  auto out_image_shape = InitImageDimInfoWith(output_dims);
1024
  auto* out_image = param.output->mutable_data<uint16_t, cl::Image2D>(
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
      out_image_shape["width"], out_image_shape["height"]);

  const bool has_bias = param.bias != nullptr;
  const bool is_element_wise_bias =
      has_bias && param.output->dims() == param.bias->dims();
  int offset = static_cast<int>(param.filter->dims()[2]) / 2 -
               static_cast<int>(paddings[0]);

  // calc input_c_block
  auto input_image_shape = InitImageDimInfoWith(input_dims);
  int input_c_block = input_image_shape["width"] / input_dims[3];
  int input_c = input_dims[1];
  auto dilations = *param.dilations;

  const std::vector<size_t>& default_work_size =
      DefaultWorkSize(output_dims,
                      DDim(std::vector<DDim::value_type>{
                          static_cast<int64_t>(out_image_shape["width"]),
                          static_cast<int64_t>(out_image_shape["height"])}));

  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];

  VLOG(4) << "============ depthwise conv2d params ============";
  VLOG(4) << "input_image_shape: " << input_image_shape["width"] << ","
          << input_image_shape["height"];
  VLOG(4) << "input_c_block: " << input_c_block;
  VLOG(4) << "input_c: " << input_c;
  VLOG(4) << "input_image: " << input_image;
  VLOG(4) << "filter_dims: " << filter_dims;
  VLOG(4) << "filter_image: " << filter_image;
  VLOG(4) << "output_dims: " << output_dims;
  VLOG(4) << "out_image_shape: " << out_image_shape["width"] << ", "
          << out_image_shape["height"];
  VLOG(4) << "paddings: " << paddings[0] << "," << paddings[1];
  VLOG(4) << "has bias: " << has_bias;
  VLOG(4) << "is_element_wise_bias : " << is_element_wise_bias;
  VLOG(4) << "strides: " << strides[0] << "," << strides[1];
  VLOG(4) << "offset: " << offset;
  VLOG(4) << "dilations.size : " << dilations.size();
  VLOG(4) << "dilations: " << dilations[0] << ", " << dilations[1];
  VLOG(4) << "default work size{c_block, w, nh}: "
          << "{" << c_block << ", " << w << ", " << nh << ""
          << "}";

  CHECK_GE(dilations.size(), 2);
  CHECK(dilations[0] == dilations[1]);
  CHECK_GE(input_dims.size(), 4);
  CHECK_GE(paddings.size(), 2);
  CHECK(paddings[0] == paddings[1]);
  CHECK_GE(strides.size(), 2);
  CHECK(strides[0] == strides[1]);

  // handle bias  use buffer for channel wise , use image for element wise
  const cl::Buffer* bias_buf = nullptr;
  const cl::Image2D* bias_image = nullptr;
  if (has_bias) {
1083
    bias_image = bias_gpu_image_.data<uint16_t, cl::Image2D>();
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  }

  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);
  STL::stringstream kernel_key;
  kernel_key << kernel_func_names_[0] << build_options_[0];
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());
  VLOG(4) << "kernel_key: " << kernel_key.str();
  VLOG(4) << "kernel ready ... " << kernel_key.str();
  VLOG(4) << "w: " << w;

  cl_int status;
  int arg_idx = 0;
  status = kernel.setArg(arg_idx, c_block);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, w);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, nh);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *input_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, *filter_image);
  CL_CHECK_FATAL(status);
  if (has_bias) {
    VLOG(4) << "set bias_image: ";
    status = kernel.setArg(++arg_idx, *bias_image);
    CL_CHECK_FATAL(status);
  }
  status = kernel.setArg(++arg_idx, *out_image);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, strides[0]);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, offset);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_c_block);
  CL_CHECK_FATAL(status);

  status = kernel.setArg(++arg_idx, dilations[0]);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, input_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, output_height);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_width);
  CL_CHECK_FATAL(status);
  status = kernel.setArg(++arg_idx, filter_height);
  CL_CHECK_FATAL(status);

  auto global_work_size =
      cl::NDRange{static_cast<size_t>(default_work_size.data()[0]),
                  static_cast<size_t>(default_work_size.data()[1]),
                  static_cast<size_t>(default_work_size.data()[2])};

  VLOG(4) << "out_image: " << out_image;
  VLOG(4) << "global_work_size[3D]: {" << global_work_size[0] << ","
          << global_work_size[1] << "," << global_work_size[2] << "}";

  status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_image, event_);
}

1157 1158
void ConvImageCompute::Run() { (this->*impl_)(); }

Y
Yan Chunwei 已提交
1159 1160 1161 1162 1163 1164 1165
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(conv2d,
                     kOpenCL,
1166
                     kFP16,
1167 1168 1169 1170 1171
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1172
                                      PRECISION(kFP16),
1173 1174 1175 1176 1177
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1178
                                       PRECISION(kFP16),
1179
                                       DATALAYOUT(kImageDefault))})
Y
Yan Chunwei 已提交
1180
    .Finalize();
1181

1182
REGISTER_LITE_KERNEL(depthwise_conv2d,
1183
                     kOpenCL,
1184
                     kFP16,
1185 1186 1187 1188 1189
                     kImageDefault,
                     paddle::lite::kernels::opencl::ConvImageCompute,
                     image2d)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
1190
                                      PRECISION(kFP16),
1191 1192 1193 1194 1195
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
1196
                                       PRECISION(kFP16),
1197 1198
                                       DATALAYOUT(kImageDefault))})
    .Finalize();