conv_add_bn_kernel.cpp 4.8 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = false;
Z
zhangyang 已提交
25
  auto *input = const_cast<Tensor *>(param->Input());
26
  auto input_ptr = input->data<float>();
Z
zhangyang 已提交
27 28
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
Z
zhangyang 已提交
29
  auto *filter = const_cast<Tensor *>(param->Filter());
H
hanbuhe 已提交
30

Z
zhangyang 已提交
31
  Tensor *out = param->Output();
Z
zhangyang 已提交
32

Z
zhangyang 已提交
33 34 35 36 37
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
38
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0] &&
Z
zhangyang 已提交
39
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
40
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
41

Z
zhangyang 已提交
42
  const int channel = out->dims()[1];
Z
zhangyang 已提交
43
  auto *bs_ptr =
H
hanbuhe 已提交
44
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
45 46
  auto *new_scale = new Tensor();
  auto *new_bias = new Tensor();
Z
zhangyang 已提交
47 48 49 50
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
51 52 53 54
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
55 56
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
57 58 59 60
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

Z
zhangyang 已提交
61 62
  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
63
  auto filter_ptr = filter->data<float>();
H
hanbuhe 已提交
64

Z
zhangyang 已提交
65 66 67 68 69
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
70
  auto out_ptr = out->mutable_data<float>();
Z
zhangyang 已提交
71

Z
zhangyang 已提交
72 73 74 75 76
  fpga::WrapperConvArgs convArgs;
  convArgs.group_num = (uint32_t)param->Groups();
  convArgs.split_num = (uint32_t)fpga::get_plit_num(filter);
  convArgs.filter_num = (uint32_t)filter->dims()[0];
  convArgs.output.address = out_ptr;
Z
zhangyang 已提交
77
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
78 79
  convArgs.args = (fpga::ConvArgs *)fpga::fpga_malloc(convArgs.split_num *
                                                      sizeof(fpga::ConvArgs));
Z
zhangyang 已提交
80
  param->SetFpgaArgs(convArgs);
H
hanbuhe 已提交
81

Z
zhangyang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  int n = convArgs.split_num;
  for (int i = 0; i < n; i++) {
    convArgs.args[i].relu_enabled = relu_enabled;
    convArgs.args[i].group_num = (uint32_t)param->Groups();
    convArgs.args[i].kernel.stride_h = (uint32_t)param->Strides()[0];
    convArgs.args[i].kernel.stride_w = (uint32_t)param->Strides()[1];
    convArgs.args[i].kernel.height = (uint32_t)filter->dims()[2];
    convArgs.args[i].kernel.width = (uint32_t)filter->dims()[3];
    convArgs.args[i].image.address = input_ptr;
    convArgs.args[i].image.channels = (uint32_t)input->dims()[1];
    convArgs.args[i].image.height = (uint32_t)input->dims()[2];
    convArgs.args[i].image.width = (uint32_t)input->dims()[3];
    convArgs.args[i].image.pad_height = (uint32_t)param->Paddings()[0];
    convArgs.args[i].image.pad_width = (uint32_t)param->Paddings()[1];
    convArgs.args[i].filter_address = &((int8_t *)filter_ptr)[i * element_num];
    convArgs.args[i].sb_address = &((int8_t *)bs_ptr)[i * element_num];
    convArgs.args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
                                    channel - (n - 1) * element_num_per_div)
                              : element_num_per_div);
    convArgs.args[i].image.scale_address =
        (float *)fpga::fpga_malloc(2 * sizeof(float));
  }
Z
zhangyang 已提交
108 109 110 111
  return true;
}

template <>
Z
zhangyang 已提交
112
void ConvAddBNKernel<FPGA, float>::Compute(
N
nhzlx 已提交
113
    const FusionConvAddBNParam<FPGA> &param) const {
Z
zhangyang 已提交
114 115 116 117 118 119 120 121
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif