model_parser.cc 31.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/model_parser/model_parser.h"
#include <algorithm>
#include <fstream>
#include <limits>
Y
Yan Chunwei 已提交
19
#include <set>
Y
Yan Chunwei 已提交
20 21 22
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/core/variable.h"
23
#include "lite/core/version.h"
Y
Yan Chunwei 已提交
24
#include "lite/model_parser/desc_apis.h"
Y
Yan Chunwei 已提交
25
#include "lite/model_parser/naive_buffer/combined_params_desc.h"
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "lite/model_parser/naive_buffer/param_desc.h"
#include "lite/model_parser/naive_buffer/program_desc.h"
#include "lite/model_parser/naive_buffer/var_desc.h"
#ifndef LITE_ON_TINY_PUBLISH
#include "lite/model_parser/pb/program_desc.h"
#include "lite/model_parser/pb/var_desc.h"
#endif
#include "lite/utils/io.h"

namespace paddle {
namespace lite {

#ifndef LITE_ON_TINY_PUBLISH
int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
J
juncaipeng 已提交
49
    DO(INT16, int16_t);
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
      LOG(FATAL) << "unknown data type " << type;
  }
  return -1;
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
  std::vector<int64_t> dims_vec;
  std::copy(
      desc.dims().begin(), desc.dims().end(), std::back_inserter(dims_vec));
  lite::DDim dims(dims_vec);
  tensor->Resize(dims);
  void *buf;
  size_t size = tensor->dims().production() * SizeOfType(desc.data_type());
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
86 87 88 89 90 91 92 93 94 95 96 97 98
#define SET_TENSOR(desc, type, precision) \
  case Type::VarType_Type_##desc:         \
    buf = tensor->mutable_data<type>();   \
    tensor->set_precision(precision);     \
    break

    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
99 100 101
    default:
      LOG(FATAL) << "unknown type " << desc.data_type();
  }
102
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
  uint32_t version{};
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  VLOG(3) << "model version " << version;

  // Load LoD information
  uint64_t lod_level{};
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<uint64_t> tmp(size / sizeof(uint64_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file: " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
143
    const std::string &path, bool program_from_memory) {
Y
Yan Chunwei 已提交
144 145
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
146 147 148 149 150 151 152
  if (!program_from_memory) {
    std::string desc_str;
    ReadBinaryFile(path, &desc_str);
    main_program->ParseFromString(desc_str);
  } else {
    main_program->ParseFromString(path);
  }
Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161 162 163 164
  return main_program;
}

void LoadParams(const std::string &path) {}

// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
  CHECK(fin.is_open()) << "failed to open file " << path;
  LoadLoDTensor(fin, out);
}

165 166 167 168 169 170 171 172 173 174 175
bool IsPersistable(const cpp::VarDesc &var) {
  if (var.Persistable() && var.GetType() != VarDescAPI::Type::FEED_MINIBATCH &&
      var.GetType() != VarDescAPI::Type::FETCH_LIST &&
      var.GetType() != VarDescAPI::Type::RAW) {
    return true;
  }
  return false;
}

void LoadCombinedParamsPb(const std::string &path,
                          lite::Scope *scope,
176 177
                          const cpp::ProgramDesc &cpp_prog,
                          bool params_from_memory) {
178 179 180 181 182 183 184 185 186 187 188 189 190 191
  CHECK(scope);
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
192 193 194 195 196 197 198 199 200 201
  auto load_var_func = [&](std::istream &is) {
    for (size_t i = 0; i < paramlist.size(); ++i) {
      auto *var = scope->Var(paramlist[i]);
      // Error checking
      CHECK(static_cast<bool>(is))
          << "There is a problem with loading model parameters";
      LoadLoDTensor(is, var);
    }
    is.peek();
    CHECK(is.eof()) << "You are not allowed to load partial data via"
202
                    << " LoadCombinedParamsPb, use LoadParam instead.";
203 204 205 206 207 208 209 210 211 212
  };

  if (params_from_memory) {
    std::stringstream fin(path, std::ios::in | std::ios::binary);
    load_var_func(fin);
  } else {
    std::ifstream fin(path, std::ios::binary);
    CHECK(fin.is_open());
    load_var_func(fin);
  }
213 214
}

Y
Yan Chunwei 已提交
215
void LoadModelPb(const std::string &model_dir,
216 217
                 const std::string &model_file,
                 const std::string &param_file,
Y
Yan Chunwei 已提交
218
                 Scope *scope,
219
                 cpp::ProgramDesc *cpp_prog,
220 221
                 bool combined,
                 bool model_from_memory) {
Y
Yan Chunwei 已提交
222 223 224 225 226
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
227
  VLOG(4) << "Start load model program...";
228 229 230 231
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_file;
  }
232 233
  framework::proto::ProgramDesc pb_proto_prog =
      *LoadProgram(prog_path, model_from_memory);
Y
Yan Chunwei 已提交
234 235 236 237 238 239
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(pb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
240 241 242 243 244
  VLOG(4) << "Start load model params...";
  CHECK(!(!combined && model_from_memory))
      << "If you want use the model_from_memory,"
      << " you should load the combined model using cfg.set_model_buffer "
         "interface.";
245
  if (combined) {
246
    LoadCombinedParamsPb(param_file, scope, *cpp_prog, model_from_memory);
247 248 249 250 251
  } else {
    auto main_block = pb_proto_prog.blocks(0);
    for (auto &var : main_block.vars()) {
      if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
        continue;
Y
Yan Chunwei 已提交
252

253 254
      std::string file_path = model_dir + "/" + var.name();
      VLOG(4) << "reading weight " << var.name();
Y
Yan Chunwei 已提交
255

256 257 258 259 260 261 262 263
      std::ifstream file(file_path);
      switch (var.type().type()) {
        case framework::proto::VarType_Type_LOD_TENSOR:
          LoadLoDTensor(file, scope->Var(var.name()));
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
264 265
    }
  }
266

Y
Yan Chunwei 已提交
267 268 269 270 271
  VLOG(4) << "Load protobuf model in '" << model_dir << "'' successfully";
}

void SaveModelPb(const std::string &model_dir,
                 const Scope &exec_scope,
272 273
                 const cpp::ProgramDesc &cpp_prog,
                 bool combined) {
Y
Yan Chunwei 已提交
274 275 276 277 278 279
  MkDirRecur(model_dir);
  // Save program
  framework::proto::ProgramDesc pb_proto_prog;
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &pb_prog);

280 281 282 283
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_dir + "/model";
  }
Y
Yan Chunwei 已提交
284 285 286 287 288 289 290 291
  std::ofstream model_ostream(prog_path, std::ios_base::binary);
  CHECK(model_ostream.is_open());
  const std::string pb_str = pb_proto_prog.SerializeAsString();
  model_ostream.write(pb_str.c_str(), pb_str.size());
  model_ostream.close();

  // Save Params
  // NOTE: Only main block be used now.
292 293 294 295 296 297 298 299 300 301 302 303 304 305
  if (combined) {
    const std::string combined_params_path = model_dir + "/params";
    SaveCombinedParamsPb(combined_params_path, exec_scope, cpp_prog);
  } else {
    for (auto &item : pb_proto_prog.blocks(0).vars()) {
      if (item.name() == "feed" || item.name() == "fetch" ||
          !item.persistable())
        continue;
      const std::string path = model_dir + "/" + item.name();
      std::ofstream var_ostream(path, std::ios::binary);
      CHECK(var_ostream.is_open());
      SerializeTensor(var_ostream, exec_scope, item.name());
      var_ostream.close();
    }
Y
Yan Chunwei 已提交
306 307 308 309
  }
  VLOG(4) << "Save protobuf model in '" << model_dir << "'' successfully";
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
void SaveCombinedParamsPb(const std::string &path,
                          const lite::Scope &exec_scope,
                          const cpp::ProgramDesc &cpp_prog) {
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
  std::ofstream file(path);
  CHECK(file.is_open());
  for (size_t i = 0; i < paramlist.size(); ++i) {
    SerializeTensor(file, exec_scope, paramlist[i]);
  }
  file.close();
}

Y
Yan Chunwei 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {
    uint64_t size = tensor.lod().size();
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
    // TODO(Superjomn) support other data types.
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.set_data_type(type_desc);          \
    break

      SET_DATA_TYPE(PRECISION(kFloat), framework::proto::VarType_Type_FP32);
      SET_DATA_TYPE(PRECISION(kInt8), framework::proto::VarType_Type_INT8);
      SET_DATA_TYPE(PRECISION(kInt16), framework::proto::VarType_Type_INT16);
      SET_DATA_TYPE(PRECISION(kInt32), framework::proto::VarType_Type_INT32);
      SET_DATA_TYPE(PRECISION(kInt64), framework::proto::VarType_Type_INT64);
#undef SET_DATA_TYPE
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    auto dims_vec = dims.Vectorize();
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
    uint64_t size = tensor.memory_size();
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
    if (tensor.target() == TARGET(kCUDA)) {
      std::unique_ptr<char> tmp_buffer(new char[size]);
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(),
                                    tensor.data<float>(),
                                    tensor.data_size(),
                                    IoDirection::DtoH);
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
    } else  // NOLINT
#endif      // LITE_WITH_CUDA
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

void SerializeTensor(std::ostream &os,
                     const lite::Scope &scope,
                     const std::string &var_name) {
  // Store all the persistable vars.
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
}

/// For navie buffer
Y
Yan Chunwei 已提交
423 424 425 426 427 428
void SetParamInfoNaive(naive_buffer::ParamDesc *param_desc,
                       const lite::Scope &scope,
                       const std::string &var_name) {
  CHECK(param_desc);
  auto &desc = *param_desc;

Y
Yan Chunwei 已提交
429 430 431 432 433 434
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;

  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();

Y
Yan Chunwei 已提交
435
  desc.SetName(var_name);
Y
Yan Chunwei 已提交
436 437 438 439 440 441 442 443

  desc.SetModelVersion(version);
  desc.SetTensorVersion(version);

  desc.SetLoDLevel(tensor.lod().size());
  desc.SetLoD(tensor.lod());

  // TODO(sangoly): support other data types.
444 445 446 447
  switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.SetDataType(type_desc);            \
448
    break;
449 450 451 452 453 454 455 456 457 458 459

    SET_DATA_TYPE(PRECISION(kFloat), VarDescAPI::VarDataType::FP32);
    SET_DATA_TYPE(PRECISION(kInt8), VarDescAPI::VarDataType::INT8);
    SET_DATA_TYPE(PRECISION(kInt16), VarDescAPI::VarDataType::INT16);
    SET_DATA_TYPE(PRECISION(kInt32), VarDescAPI::VarDataType::INT32);
    SET_DATA_TYPE(PRECISION(kInt64), VarDescAPI::VarDataType::INT64);
#undef SET_DATA_TYPE
    default:
      LOG(FATAL) << "unknown precision type: "
                 << PrecisionToStr(tensor.precision());
  }
Y
Yan Chunwei 已提交
460 461 462 463 464 465 466
  desc.SetDim(tensor.dims().Vectorize());
  uint64_t size = tensor.memory_size();
  CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
      << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
  if (tensor.target() == TARGET(kCUDA)) {
467 468
    switch (tensor.precision()) {
#define DO(precision, type)                                         \
469
  case precision: {                                                 \
470 471 472 473 474 475
    std::unique_ptr<type> tmp_buffer(new type[tensor.data_size()]); \
    TargetWrapperCuda::MemcpySync(tmp_buffer.get(),                 \
                                  tensor.data<type>(),              \
                                  tensor.data_size(),               \
                                  IoDirection::DtoH);               \
    desc.SetData<type>(tmp_buffer.get(), tensor.data_size());       \
476
  } break;
477 478 479 480 481 482 483 484 485 486
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
487 488 489
  } else  // NOLINT
#endif    // LITE_WITH_CUDA
  {
490 491 492 493
    switch (tensor.precision()) {
#define DO(precision, type)                                      \
  case precision:                                                \
    desc.SetData<type>(tensor.data<type>(), tensor.data_size()); \
494
    break;
495 496 497 498 499 500 501 502 503 504
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
505
  }
Y
Yan Chunwei 已提交
506 507 508 509 510 511 512 513 514 515
}

void SaveParamNaive(const std::string &path,
                    const lite::Scope &scope,
                    const std::string &var_name) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ParamDesc pt_desc(&table);
  naive_buffer::ParamDesc desc(&pt_desc);

  SetParamInfoNaive(&desc, scope, var_name);
Y
Yan Chunwei 已提交
516 517 518 519 520 521

  // Save param
  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
void SaveCombinedParamsNaive(const std::string &path,
                             const lite::Scope &exec_scope,
                             const cpp::ProgramDesc &cpp_prog) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    naive_buffer::ParamDesc param_desc(desc.AddParam());
    SetParamInfoNaive(&param_desc, exec_scope, var.Name());
  }

  pt_desc.Save();
540
  table.AppendToFile(path);
Y
Yan Chunwei 已提交
541 542
}

Y
Yan Chunwei 已提交
543 544
void SaveModelNaive(const std::string &model_dir,
                    const Scope &exec_scope,
Y
Yan Chunwei 已提交
545 546
                    const cpp::ProgramDesc &cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
547 548
  MkDirRecur(model_dir);
  // Save program
549
  const std::string prog_path = model_dir + ".nb";
Y
Yan Chunwei 已提交
550 551 552 553 554 555
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &nb_prog);
  nb_proto_prog.Save();

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  // Save meta_version(uint16) into file
  naive_buffer::BinaryTable meta_version_table;
  meta_version_table.Require(sizeof(uint16_t));
  uint16_t meta_version = 0;
  memcpy(meta_version_table.cursor(), &meta_version, sizeof(uint16_t));
  meta_version_table.Consume(sizeof(uint16_t));
  meta_version_table.SaveToFile(prog_path);

  // Save lite_version(char[16]) into file
  const int paddle_version_length = 16 * sizeof(char);
  naive_buffer::BinaryTable paddle_version_table;
  paddle_version_table.Require(paddle_version_length);
  std::string paddle_version = version();
  memcpy(paddle_version_table.cursor(),
         paddle_version.c_str(),
         paddle_version_length);
  paddle_version_table.Consume(paddle_version_length);
  paddle_version_table.AppendToFile(prog_path);
  VLOG(4) << "paddle_version:" << paddle_version << std::endl;

  // Save topology_size(uint64) into file
  naive_buffer::BinaryTable topology_size_table;
  topology_size_table.Require(sizeof(uint64_t));
  uint64_t topology_size = table.size();
  memcpy(topology_size_table.cursor(), &topology_size, sizeof(uint64_t));
  topology_size_table.Consume(sizeof(uint64_t));
  topology_size_table.AppendToFile(prog_path);

  // save topology data into model file
  table.AppendToFile(prog_path);
Y
Yan Chunwei 已提交
586
  // Save Params
587 588
  SaveCombinedParamsNaive(prog_path, exec_scope, cpp_prog);

589
  LOG(INFO) << "Save naive buffer model in '" << model_dir << "' successfully";
Y
Yan Chunwei 已提交
590 591 592 593 594 595 596 597 598 599 600 601
}
#endif

template <typename T>
void SetTensorDataNaive(T *out, size_t size, const std::vector<T> &src) {
  CHECK(out);
  CHECK(size == src.size());
  for (size_t i = 0; i < size; ++i) {
    out[i] = src[i];
  }
}

Y
Yan Chunwei 已提交
602 603 604
void GetParamInfoNaive(const naive_buffer::ParamDesc &desc,
                       lite::Scope *scope,
                       const std::string &name) {
Y
Yan Chunwei 已提交
605
  CHECK(scope);
Y
Yan Chunwei 已提交
606 607 608
  CHECK_EQ(desc.Name(), name)
      << "Var name not equal: ParamDesc.name=" << desc.Name()
      << "vs filename=" << name;
Y
Yan Chunwei 已提交
609

Y
Yan Chunwei 已提交
610
  auto *tensor = scope->Var(name)->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624

  VLOG(3) << "model version " << desc.ModelVersion();
  CHECK_EQ(desc.TensorVersion(), 0U) << "Only version 0 is supported";

  // Load LoD info
  auto *tgt_lod = tensor->mutable_lod();
  auto desc_lod = desc.LoD();
  tgt_lod->assign(desc_lod.begin(), desc_lod.end());

  // Load Dim info
  tensor->Resize(lite::DDim(desc.Dim()));

  // Load data
  switch (desc.GetDataType()) {
625
#define SET_TENSOR(data_type__, T, precision)                            \
Y
Yan Chunwei 已提交
626 627 628
  case VarDescAPI::VarDataType::data_type__:                             \
    SetTensorDataNaive<T>(                                               \
        tensor->mutable_data<T>(), tensor->data_size(), desc.Data<T>()); \
629
    tensor->set_precision(precision);                                    \
Y
Yan Chunwei 已提交
630 631
    break

632 633 634 635 636 637 638
    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
639 640 641
    default:
      LOG(FATAL) << "unknown type";
  }
642
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
643 644
}

Y
Yan Chunwei 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657
void LoadParamNaive(const std::string &path,
                    lite::Scope *scope,
                    const std::string &name) {
  // Load param
  naive_buffer::BinaryTable table;
  table.LoadFromFile(path);
  naive_buffer::proto::ParamDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::ParamDesc desc(&pt_desc);
  GetParamInfoNaive(desc, scope, name);
}

void LoadCombinedParamsNaive(const std::string &path,
658
                             const uint64_t &offset,
Y
Yan Chunwei 已提交
659
                             lite::Scope *scope,
660 661
                             const cpp::ProgramDesc &cpp_prog,
                             bool params_from_memory) {
Y
Yan Chunwei 已提交
662
  naive_buffer::BinaryTable table;
663
  if (params_from_memory) {
664
    table.LoadFromMemory(path.c_str() + offset, path.length() - offset);
665
  } else {
666
    table.LoadFromFile(path, offset, 0);
667
  }
Y
Yan Chunwei 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  std::set<std::string> param_names;
  for (size_t i = 0; i < desc.ParamsSize(); ++i) {
    naive_buffer::ParamDesc param_desc(desc.GetParam(i));
    GetParamInfoNaive(param_desc, scope, param_desc.Name());
    param_names.insert(param_desc.Name());
  }

  // Check all params loaded
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    CHECK(param_names.count(var.Name())) << "Persistable var[" << var.Name()
                                         << "] not found";
  }
}

Y
Yan Chunwei 已提交
691 692
void LoadModelNaive(const std::string &model_dir,
                    Scope *scope,
Y
Yan Chunwei 已提交
693 694
                    cpp::ProgramDesc *cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
695 696 697 698
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

699 700 701 702 703 704 705
  LOG(WARNING)
      << "WARNING: MobileConfig::set_model_dir and "
         "MobileConfig::set_model_buffer are deprecated APIs "
         "and will be removed in latter release. \n"
         "    MobileConfig::set_model_from_file(const std::string& model_file)"
         " and MobileConfig::set_model_from_buffer(const std::string& "
         "model_buffer) are recommended.";
Y
Yan Chunwei 已提交
706
  // Load model
Y
Yan Chunwei 已提交
707
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
708 709 710 711 712 713 714 715 716 717 718
  naive_buffer::BinaryTable table;
  table.LoadFromFile(prog_path);
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
719 720
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
721
    LoadCombinedParamsNaive(combined_params_path, 0, scope, *cpp_prog, false);
Y
Yan Chunwei 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
  } else {
    auto &prog = *cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;

      std::string file_path = model_dir + "/" + var.Name() + ".nb";
      VLOG(4) << "reading weight " << var.Name();

      switch (var.GetType()) {
        case VarDescAPI::Type::LOD_TENSOR:
          LoadParamNaive(file_path, scope, var.Name());
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
740 741 742 743 744 745
    }
  }

  VLOG(4) << "Load naive buffer model in '" << model_dir << "' successfully";
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * Binary structure of naive_buffer model: model.nb
 * ----------------------------------------------------------
 * |       |    PART         |   Precision |   Length(byte) |
 * |   1   |  meta_version   |   uint16_t  |       2        |
 * |   2   |  opt_version    |   char[16]  |      16        |
 * |   3   |  topo_size      |   uint64_t  |       8        |
 * |   4   |  topo_data      |   char[]    | topo_size byte |
 * |   5   |  param_data     |   char[]    |                |
 * ----------------------------------------------------------
 *  Meaning of each part:
 *      meta_version: meata_version, 0 default.
 *      opt_version:  lite_version of opt tool that transformed this model.
 *      topo_size:    length of `topo_data`.
 *      topo_data:    contains model's topology data.
 *      param_data:   contains model's params data.
*/

// usage: LoadModelNaiveFromFile is used for loading model from file.
template <typename T>
void ReadModelDataFromFile(T *data,
                           const std::string &prog_path,
                           uint64_t *offset,
                           const uint64_t &size) {
  naive_buffer::BinaryTable data_table;
  data_table.LoadFromFile(prog_path, *offset, size);
  memcpy(data, data_table.cursor(), size);
  *offset = *offset + size;
}

void LoadModelNaiveFromFile(const std::string &filename,
                            Scope *scope,
                            cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();
  // ModelFile
  const std::string prog_path = filename;

  // Offset
  uint64_t offset = 0;

  // (1)get meta version
  uint16_t meta_version;
  ReadModelDataFromFile<uint16_t>(
      &meta_version, prog_path, &offset, sizeof(uint16_t));
  VLOG(4) << "Meta_version:" << meta_version;

  // (2)get opt version
  char opt_version[16];
796
  const uint64_t opt_version_length = 16 * sizeof(char);
797
  ReadModelDataFromFile<char>(
798
      opt_version, prog_path, &offset, opt_version_length);
799 800
  VLOG(4) << "Opt_version:" << opt_version;

801 802 803 804 805 806 807 808 809 810 811 812
  // check version, opt's version should be consistent with current Paddle-Lite
  // version.
  const std::string paddle_version = version();
  const std::string opt_version_str = opt_version;
  if (paddle_version != opt_version_str) {
    LOG(WARNING) << "warning: the version of opt that transformed this model "
                    "is not consistent with current Paddle-Lite version."
                    "\n      version of opt:"
                 << opt_version
                 << "\n      version of current Paddle-Lite:" << paddle_version;
  }

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
  // (3)get topo_size
  uint64_t topo_size;
  ReadModelDataFromFile<uint64_t>(
      &topo_size, prog_path, &offset, sizeof(uint64_t));

  // (4)get topo data
  naive_buffer::BinaryTable topo_table;
  topo_table.LoadFromFile(prog_path, offset, topo_size);
  offset = offset + topo_size;
  // transform topo_data into cpp::ProgramDesc
  naive_buffer::proto::ProgramDesc nb_proto_prog(&topo_table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // (5)Load Params
  LoadCombinedParamsNaive(prog_path, offset, scope, *cpp_prog, false);

  VLOG(4) << "Load naive buffer model in '" << filename << "' successfully";
}

// warning: this is an old inference and is not suggested.
// todo: this inference will be abandened in release/v3.0.0
836 837 838 839 840 841 842 843 844 845 846
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              const std::string &param_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model

  naive_buffer::BinaryTable table;
847
  table.LoadFromMemory(model_buffer.c_str(), model_buffer.length());
848 849 850 851 852 853 854 855 856 857 858

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
  LoadCombinedParamsNaive(param_buffer, 0, scope, *cpp_prog, true);

  VLOG(4) << "Load model from naive buffer memory successfully";
}

// usage: LoadModelNaiveFromMemory is used for loading naive model from memory
template <typename T>
void ReadModelDataFromBuffer(T *data,
                             const std::string &model_buffer,
                             uint64_t *offset,
                             const uint64_t &size) {
  naive_buffer::BinaryTable data_table;
  data_table.LoadFromMemory(model_buffer.c_str() + *offset, size);
  memcpy(data, data_table.cursor(), size);
  *offset = *offset + size;
}
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Offset
  uint64_t offset = 0;

  // (1)get meta version
  uint16_t meta_version;
  ReadModelDataFromBuffer<uint16_t>(
      &meta_version, model_buffer, &offset, sizeof(uint16_t));
  VLOG(4) << "Meta_version:" << meta_version;

  // (2)get opt version
  char opt_version[16];
  const uint64_t paddle_version_length = 16 * sizeof(char);
  ReadModelDataFromBuffer<char>(
      opt_version, model_buffer, &offset, paddle_version_length);
  VLOG(4) << "Opt_version:" << opt_version;

  // (3)get topo_size and topo_data
  uint64_t topo_size;
  ReadModelDataFromBuffer<uint64_t>(
      &topo_size, model_buffer, &offset, sizeof(uint64_t));
  naive_buffer::BinaryTable table;
  table.LoadFromMemory(model_buffer.c_str() + offset, topo_size);
  offset = offset + topo_size;

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
  LoadCombinedParamsNaive(model_buffer, offset, scope, *cpp_prog, true);
917 918 919 920

  VLOG(4) << "Load model from naive buffer memory successfully";
}

Y
Yan Chunwei 已提交
921 922
}  // namespace lite
}  // namespace paddle