model_parser.cc 25.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/model_parser/model_parser.h"
#include <algorithm>
#include <fstream>
#include <limits>
Y
Yan Chunwei 已提交
19
#include <set>
Y
Yan Chunwei 已提交
20 21 22 23
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/core/variable.h"
#include "lite/model_parser/desc_apis.h"
Y
Yan Chunwei 已提交
24
#include "lite/model_parser/naive_buffer/combined_params_desc.h"
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include "lite/model_parser/naive_buffer/param_desc.h"
#include "lite/model_parser/naive_buffer/program_desc.h"
#include "lite/model_parser/naive_buffer/var_desc.h"
#ifndef LITE_ON_TINY_PUBLISH
#include "lite/model_parser/pb/program_desc.h"
#include "lite/model_parser/pb/var_desc.h"
#endif
#include "lite/utils/io.h"

namespace paddle {
namespace lite {

#ifndef LITE_ON_TINY_PUBLISH
int SizeOfType(framework::proto::VarType::Type type) {
  using Type = framework::proto::VarType::Type;
  switch (static_cast<int>(type)) {
#define DO(desc, type)            \
  case Type::VarType_Type_##desc: \
    return sizeof(type);
    DO(BOOL, bool);
    DO(FP16, float);
    DO(FP32, float);
    DO(INT8, int8_t);
    DO(INT32, int);
    DO(INT64, int64_t);
#undef DO
    default:
      LOG(FATAL) << "unknown data type " << type;
  }
  return -1;
}

void TensorFromStream(std::istream &is, lite::Tensor *tensor) {
  using Type = framework::proto::VarType::Type;
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  CHECK_EQ(version, 0U) << "Only version 0 is supported";
  // read tensor desc
  framework::proto::VarType::TensorDesc desc;
  {
    // int32_t size
    // proto buffer
    int32_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::unique_ptr<char[]> buf(new char[size]);
    is.read(reinterpret_cast<char *>(buf.get()), size);
    CHECK(desc.ParseFromArray(buf.get(), size)) << "Cannot parse tensor desc";
  }

  // read tensor
  std::vector<int64_t> dims_vec;
  std::copy(
      desc.dims().begin(), desc.dims().end(), std::back_inserter(dims_vec));
  lite::DDim dims(dims_vec);
  tensor->Resize(dims);
  void *buf;
  size_t size = tensor->dims().production() * SizeOfType(desc.data_type());
  // alllocate memory
  switch (static_cast<int>(desc.data_type())) {
84 85 86 87 88 89 90 91 92 93 94 95 96
#define SET_TENSOR(desc, type, precision) \
  case Type::VarType_Type_##desc:         \
    buf = tensor->mutable_data<type>();   \
    tensor->set_precision(precision);     \
    break

    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
97 98 99
    default:
      LOG(FATAL) << "unknown type " << desc.data_type();
  }
100
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

  is.read(static_cast<char *>(buf), size);
}

void LoadLoDTensor(std::istream &is, Variable *var) {
  auto *tensor = var->GetMutable<lite::Tensor>();
  uint32_t version{};
  is.read(reinterpret_cast<char *>(&version), sizeof(version));
  VLOG(3) << "model version " << version;

  // Load LoD information
  uint64_t lod_level{};
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<uint64_t> tmp(size / sizeof(uint64_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    lod[i] = tmp;
  }

  TensorFromStream(is, tensor);
}

void ReadBinaryFile(const std::string &filename, std::string *contents) {
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
  CHECK(fin.is_open()) << "Cannot open file: " << filename;
  fin.seekg(0, std::ios::end);
  auto size = fin.tellg();
  contents->clear();
  contents->resize(size);
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
}

std::unique_ptr<framework::proto::ProgramDesc> LoadProgram(
141
    const std::string &path, bool program_from_memory) {
Y
Yan Chunwei 已提交
142 143
  std::unique_ptr<framework::proto::ProgramDesc> main_program(
      new framework::proto::ProgramDesc);
144 145 146 147 148 149 150
  if (!program_from_memory) {
    std::string desc_str;
    ReadBinaryFile(path, &desc_str);
    main_program->ParseFromString(desc_str);
  } else {
    main_program->ParseFromString(path);
  }
Y
Yan Chunwei 已提交
151 152 153 154 155 156 157 158 159 160 161 162
  return main_program;
}

void LoadParams(const std::string &path) {}

// Load directly to CPU, and latter transfer to other devices.
void LoadParam(const std::string &path, Variable *out) {
  std::ifstream fin(path, std::ios::binary);
  CHECK(fin.is_open()) << "failed to open file " << path;
  LoadLoDTensor(fin, out);
}

163 164 165 166 167 168 169 170 171 172 173
bool IsPersistable(const cpp::VarDesc &var) {
  if (var.Persistable() && var.GetType() != VarDescAPI::Type::FEED_MINIBATCH &&
      var.GetType() != VarDescAPI::Type::FETCH_LIST &&
      var.GetType() != VarDescAPI::Type::RAW) {
    return true;
  }
  return false;
}

void LoadCombinedParamsPb(const std::string &path,
                          lite::Scope *scope,
174 175
                          const cpp::ProgramDesc &cpp_prog,
                          bool params_from_memory) {
176 177 178 179 180 181 182 183 184 185 186 187 188 189
  CHECK(scope);
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
190 191 192 193 194 195 196 197 198 199
  auto load_var_func = [&](std::istream &is) {
    for (size_t i = 0; i < paramlist.size(); ++i) {
      auto *var = scope->Var(paramlist[i]);
      // Error checking
      CHECK(static_cast<bool>(is))
          << "There is a problem with loading model parameters";
      LoadLoDTensor(is, var);
    }
    is.peek();
    CHECK(is.eof()) << "You are not allowed to load partial data via"
200
                    << " LoadCombinedParamsPb, use LoadParam instead.";
201 202 203 204 205 206 207 208 209 210
  };

  if (params_from_memory) {
    std::stringstream fin(path, std::ios::in | std::ios::binary);
    load_var_func(fin);
  } else {
    std::ifstream fin(path, std::ios::binary);
    CHECK(fin.is_open());
    load_var_func(fin);
  }
211 212
}

Y
Yan Chunwei 已提交
213
void LoadModelPb(const std::string &model_dir,
214 215
                 const std::string &model_file,
                 const std::string &param_file,
Y
Yan Chunwei 已提交
216
                 Scope *scope,
217
                 cpp::ProgramDesc *cpp_prog,
218 219
                 bool combined,
                 bool model_from_memory) {
Y
Yan Chunwei 已提交
220 221 222 223 224
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
225
  VLOG(4) << "Start load model program...";
226 227 228 229
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_file;
  }
230 231
  framework::proto::ProgramDesc pb_proto_prog =
      *LoadProgram(prog_path, model_from_memory);
Y
Yan Chunwei 已提交
232 233 234 235 236 237
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(pb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
238 239 240 241 242
  VLOG(4) << "Start load model params...";
  CHECK(!(!combined && model_from_memory))
      << "If you want use the model_from_memory,"
      << " you should load the combined model using cfg.set_model_buffer "
         "interface.";
243
  if (combined) {
244
    LoadCombinedParamsPb(param_file, scope, *cpp_prog, model_from_memory);
245 246 247 248 249
  } else {
    auto main_block = pb_proto_prog.blocks(0);
    for (auto &var : main_block.vars()) {
      if (var.name() == "feed" || var.name() == "fetch" || !var.persistable())
        continue;
Y
Yan Chunwei 已提交
250

251 252
      std::string file_path = model_dir + "/" + var.name();
      VLOG(4) << "reading weight " << var.name();
Y
Yan Chunwei 已提交
253

254 255 256 257 258 259 260 261
      std::ifstream file(file_path);
      switch (var.type().type()) {
        case framework::proto::VarType_Type_LOD_TENSOR:
          LoadLoDTensor(file, scope->Var(var.name()));
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
262 263
    }
  }
264

Y
Yan Chunwei 已提交
265 266 267 268 269
  VLOG(4) << "Load protobuf model in '" << model_dir << "'' successfully";
}

void SaveModelPb(const std::string &model_dir,
                 const Scope &exec_scope,
270 271
                 const cpp::ProgramDesc &cpp_prog,
                 bool combined) {
Y
Yan Chunwei 已提交
272 273 274 275 276 277
  MkDirRecur(model_dir);
  // Save program
  framework::proto::ProgramDesc pb_proto_prog;
  pb::ProgramDesc pb_prog(&pb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &pb_prog);

278 279 280 281
  std::string prog_path = model_dir + "/__model__";
  if (combined) {
    prog_path = model_dir + "/model";
  }
Y
Yan Chunwei 已提交
282 283 284 285 286 287 288 289
  std::ofstream model_ostream(prog_path, std::ios_base::binary);
  CHECK(model_ostream.is_open());
  const std::string pb_str = pb_proto_prog.SerializeAsString();
  model_ostream.write(pb_str.c_str(), pb_str.size());
  model_ostream.close();

  // Save Params
  // NOTE: Only main block be used now.
290 291 292 293 294 295 296 297 298 299 300 301 302 303
  if (combined) {
    const std::string combined_params_path = model_dir + "/params";
    SaveCombinedParamsPb(combined_params_path, exec_scope, cpp_prog);
  } else {
    for (auto &item : pb_proto_prog.blocks(0).vars()) {
      if (item.name() == "feed" || item.name() == "fetch" ||
          !item.persistable())
        continue;
      const std::string path = model_dir + "/" + item.name();
      std::ofstream var_ostream(path, std::ios::binary);
      CHECK(var_ostream.is_open());
      SerializeTensor(var_ostream, exec_scope, item.name());
      var_ostream.close();
    }
Y
Yan Chunwei 已提交
304 305 306 307
  }
  VLOG(4) << "Save protobuf model in '" << model_dir << "'' successfully";
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
void SaveCombinedParamsPb(const std::string &path,
                          const lite::Scope &exec_scope,
                          const cpp::ProgramDesc &cpp_prog) {
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);

  // Get vars
  std::vector<std::string> paramlist;
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (!IsPersistable(var)) continue;
    paramlist.push_back(var.Name());
  }
  std::sort(paramlist.begin(), paramlist.end());

  // Load vars
  std::ofstream file(path);
  CHECK(file.is_open());
  for (size_t i = 0; i < paramlist.size(); ++i) {
    SerializeTensor(file, exec_scope, paramlist[i]);
  }
  file.close();
}

Y
Yan Chunwei 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
void TensorToStream(std::ostream &os, const lite::Tensor &tensor) {
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {
    uint64_t size = tensor.lod().size();
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : tensor.lod()) {
      size = each.size() * sizeof(each.front());
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }

  // There are two version fields in a LoDTensor.
  os.write(reinterpret_cast<const char *>(&version), sizeof(version));

  {  // the 2nd field, tensor description
    // int32_t  size
    // void*    protobuf message
    framework::proto::VarType::TensorDesc desc;
    // TODO(Superjomn) support other data types.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.set_data_type(type_desc);          \
    break

      SET_DATA_TYPE(PRECISION(kFloat), framework::proto::VarType_Type_FP32);
      SET_DATA_TYPE(PRECISION(kInt8), framework::proto::VarType_Type_INT8);
      SET_DATA_TYPE(PRECISION(kInt16), framework::proto::VarType_Type_INT16);
      SET_DATA_TYPE(PRECISION(kInt32), framework::proto::VarType_Type_INT32);
      SET_DATA_TYPE(PRECISION(kInt64), framework::proto::VarType_Type_INT64);
#undef SET_DATA_TYPE
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    auto dims = tensor.dims();
    auto *pb_dims = desc.mutable_dims();
    pb_dims->Resize(static_cast<int>(dims.size()), 0);
    auto dims_vec = dims.Vectorize();
    std::copy(dims_vec.begin(), dims_vec.end(), pb_dims->begin());
    int32_t size = desc.ByteSize();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));
    auto out = desc.SerializeAsString();
    os.write(out.data(), size);
  }
  {  // the 3rd field, tensor data
    uint64_t size = tensor.memory_size();
    CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
        << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
    if (tensor.target() == TARGET(kCUDA)) {
      std::unique_ptr<char> tmp_buffer(new char[size]);
      TargetWrapperCuda::MemcpySync(tmp_buffer.get(),
                                    tensor.data<float>(),
                                    tensor.data_size(),
                                    IoDirection::DtoH);
      os.write(static_cast<const char *>(tmp_buffer.get()),
               static_cast<std::streamsize>(size));
    } else  // NOLINT
#endif      // LITE_WITH_CUDA
    {
      os.write(static_cast<const char *>(tensor.data<void>()),
               static_cast<std::streamsize>(size));
    }
  }
}

void SerializeTensor(std::ostream &os,
                     const lite::Scope &scope,
                     const std::string &var_name) {
  // Store all the persistable vars.
  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();
  TensorToStream(os, tensor);
}

/// For navie buffer
Y
Yan Chunwei 已提交
421 422 423 424 425 426
void SetParamInfoNaive(naive_buffer::ParamDesc *param_desc,
                       const lite::Scope &scope,
                       const std::string &var_name) {
  CHECK(param_desc);
  auto &desc = *param_desc;

Y
Yan Chunwei 已提交
427 428 429 430 431 432
  // the 1st field, uint32_t version
  constexpr uint32_t version = 0;

  auto *var = scope.FindVar(var_name);
  const auto &tensor = var->Get<lite::Tensor>();

Y
Yan Chunwei 已提交
433
  desc.SetName(var_name);
Y
Yan Chunwei 已提交
434 435 436 437 438 439 440 441

  desc.SetModelVersion(version);
  desc.SetTensorVersion(version);

  desc.SetLoDLevel(tensor.lod().size());
  desc.SetLoD(tensor.lod());

  // TODO(sangoly): support other data types.
442 443 444 445
  switch (tensor.precision()) {
#define SET_DATA_TYPE(precision, type_desc) \
  case precision:                           \
    desc.SetDataType(type_desc);            \
446
    break;
447 448 449 450 451 452 453 454 455 456 457

    SET_DATA_TYPE(PRECISION(kFloat), VarDescAPI::VarDataType::FP32);
    SET_DATA_TYPE(PRECISION(kInt8), VarDescAPI::VarDataType::INT8);
    SET_DATA_TYPE(PRECISION(kInt16), VarDescAPI::VarDataType::INT16);
    SET_DATA_TYPE(PRECISION(kInt32), VarDescAPI::VarDataType::INT32);
    SET_DATA_TYPE(PRECISION(kInt64), VarDescAPI::VarDataType::INT64);
#undef SET_DATA_TYPE
    default:
      LOG(FATAL) << "unknown precision type: "
                 << PrecisionToStr(tensor.precision());
  }
Y
Yan Chunwei 已提交
458 459 460 461 462 463 464
  desc.SetDim(tensor.dims().Vectorize());
  uint64_t size = tensor.memory_size();
  CHECK_LT(size, std::numeric_limits<std::streamsize>::max())
      << "Index overflow when writing tensor";

#ifdef LITE_WITH_CUDA
  if (tensor.target() == TARGET(kCUDA)) {
465 466
    switch (tensor.precision()) {
#define DO(precision, type)                                         \
467
  case precision: {                                                 \
468 469 470 471 472 473
    std::unique_ptr<type> tmp_buffer(new type[tensor.data_size()]); \
    TargetWrapperCuda::MemcpySync(tmp_buffer.get(),                 \
                                  tensor.data<type>(),              \
                                  tensor.data_size(),               \
                                  IoDirection::DtoH);               \
    desc.SetData<type>(tmp_buffer.get(), tensor.data_size());       \
474
  } break;
475 476 477 478 479 480 481 482 483 484
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
485 486 487
  } else  // NOLINT
#endif    // LITE_WITH_CUDA
  {
488 489 490 491
    switch (tensor.precision()) {
#define DO(precision, type)                                      \
  case precision:                                                \
    desc.SetData<type>(tensor.data<type>(), tensor.data_size()); \
492
    break;
493 494 495 496 497 498 499 500 501 502
      DO(PRECISION(kFloat), float);
      DO(PRECISION(kInt8), int8_t);
      DO(PRECISION(kInt16), int16_t);
      DO(PRECISION(kInt32), int32_t);
      DO(PRECISION(kInt64), int64_t);
#undef DO
      default:
        LOG(FATAL) << "unknown precision type: "
                   << PrecisionToStr(tensor.precision());
    }
Y
Yan Chunwei 已提交
503
  }
Y
Yan Chunwei 已提交
504 505 506 507 508 509 510 511 512 513
}

void SaveParamNaive(const std::string &path,
                    const lite::Scope &scope,
                    const std::string &var_name) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ParamDesc pt_desc(&table);
  naive_buffer::ParamDesc desc(&pt_desc);

  SetParamInfoNaive(&desc, scope, var_name);
Y
Yan Chunwei 已提交
514 515 516 517 518 519

  // Save param
  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
void SaveCombinedParamsNaive(const std::string &path,
                             const lite::Scope &exec_scope,
                             const cpp::ProgramDesc &cpp_prog) {
  naive_buffer::BinaryTable table;
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    naive_buffer::ParamDesc param_desc(desc.AddParam());
    SetParamInfoNaive(&param_desc, exec_scope, var.Name());
  }

  pt_desc.Save();
  table.SaveToFile(path);
}

Y
Yan Chunwei 已提交
541 542
void SaveModelNaive(const std::string &model_dir,
                    const Scope &exec_scope,
Y
Yan Chunwei 已提交
543 544
                    const cpp::ProgramDesc &cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
545 546
  MkDirRecur(model_dir);
  // Save program
Y
Yan Chunwei 已提交
547
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
548 549 550 551 552 553 554 555 556
  naive_buffer::BinaryTable table;
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);
  TransformProgramDescCppToAny(cpp_prog, &nb_prog);
  nb_proto_prog.Save();
  table.SaveToFile(prog_path);

  // Save Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
    SaveCombinedParamsNaive(combined_params_path, exec_scope, cpp_prog);
  } else {
    auto prog = cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;
      const std::string path = model_dir + "/" + var.Name() + ".nb";
      SaveParamNaive(path, exec_scope, var.Name());
    }
Y
Yan Chunwei 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583
  }
  VLOG(4) << "Save naive buffer model in '" << model_dir << "'' successfully";
}
#endif

template <typename T>
void SetTensorDataNaive(T *out, size_t size, const std::vector<T> &src) {
  CHECK(out);
  CHECK(size == src.size());
  for (size_t i = 0; i < size; ++i) {
    out[i] = src[i];
  }
}

Y
Yan Chunwei 已提交
584 585 586
void GetParamInfoNaive(const naive_buffer::ParamDesc &desc,
                       lite::Scope *scope,
                       const std::string &name) {
Y
Yan Chunwei 已提交
587
  CHECK(scope);
Y
Yan Chunwei 已提交
588 589 590
  CHECK_EQ(desc.Name(), name)
      << "Var name not equal: ParamDesc.name=" << desc.Name()
      << "vs filename=" << name;
Y
Yan Chunwei 已提交
591

Y
Yan Chunwei 已提交
592
  auto *tensor = scope->Var(name)->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606

  VLOG(3) << "model version " << desc.ModelVersion();
  CHECK_EQ(desc.TensorVersion(), 0U) << "Only version 0 is supported";

  // Load LoD info
  auto *tgt_lod = tensor->mutable_lod();
  auto desc_lod = desc.LoD();
  tgt_lod->assign(desc_lod.begin(), desc_lod.end());

  // Load Dim info
  tensor->Resize(lite::DDim(desc.Dim()));

  // Load data
  switch (desc.GetDataType()) {
607
#define SET_TENSOR(data_type__, T, precision)                            \
Y
Yan Chunwei 已提交
608 609 610
  case VarDescAPI::VarDataType::data_type__:                             \
    SetTensorDataNaive<T>(                                               \
        tensor->mutable_data<T>(), tensor->data_size(), desc.Data<T>()); \
611
    tensor->set_precision(precision);                                    \
Y
Yan Chunwei 已提交
612 613
    break

614 615 616 617 618 619 620
    // SET_TENSOR(BOOL, bool, PRECISION(kBool));
    SET_TENSOR(FP32, float, PRECISION(kFloat));
    SET_TENSOR(INT8, int8_t, PRECISION(kInt8));
    SET_TENSOR(INT16, int16_t, PRECISION(kInt16));
    SET_TENSOR(INT32, int32_t, PRECISION(kInt32));
    SET_TENSOR(INT64, int64_t, PRECISION(kInt64));
#undef SET_TENSOR
Y
Yan Chunwei 已提交
621 622 623
    default:
      LOG(FATAL) << "unknown type";
  }
624
  tensor->set_persistable(true);
Y
Yan Chunwei 已提交
625 626
}

Y
Yan Chunwei 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640
void LoadParamNaive(const std::string &path,
                    lite::Scope *scope,
                    const std::string &name) {
  // Load param
  naive_buffer::BinaryTable table;
  table.LoadFromFile(path);
  naive_buffer::proto::ParamDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::ParamDesc desc(&pt_desc);
  GetParamInfoNaive(desc, scope, name);
}

void LoadCombinedParamsNaive(const std::string &path,
                             lite::Scope *scope,
641 642
                             const cpp::ProgramDesc &cpp_prog,
                             bool params_from_memory) {
Y
Yan Chunwei 已提交
643
  naive_buffer::BinaryTable table;
644 645 646 647 648
  if (params_from_memory) {
    table.LoadFromMemory(path.c_str(), path.length());
  } else {
    table.LoadFromFile(path);
  }
Y
Yan Chunwei 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
  naive_buffer::proto::CombinedParamsDesc pt_desc(&table);
  pt_desc.Load();
  naive_buffer::CombinedParamsDesc desc(&pt_desc);

  std::set<std::string> param_names;
  for (size_t i = 0; i < desc.ParamsSize(); ++i) {
    naive_buffer::ParamDesc param_desc(desc.GetParam(i));
    GetParamInfoNaive(param_desc, scope, param_desc.Name());
    param_names.insert(param_desc.Name());
  }

  // Check all params loaded
  auto prog = cpp_prog;
  auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
    auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
    if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
      continue;
    CHECK(param_names.count(var.Name())) << "Persistable var[" << var.Name()
                                         << "] not found";
  }
}

Y
Yan Chunwei 已提交
672 673
void LoadModelNaive(const std::string &model_dir,
                    Scope *scope,
Y
Yan Chunwei 已提交
674 675
                    cpp::ProgramDesc *cpp_prog,
                    bool combined) {
Y
Yan Chunwei 已提交
676 677 678 679 680
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model
Y
Yan Chunwei 已提交
681
  const std::string prog_path = model_dir + "/__model__.nb";
Y
Yan Chunwei 已提交
682 683 684 685 686 687 688 689 690 691 692
  naive_buffer::BinaryTable table;
  table.LoadFromFile(prog_path);
  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
Y
Yan Chunwei 已提交
693 694
  if (combined) {
    const std::string combined_params_path = model_dir + "/param.nb";
695
    LoadCombinedParamsNaive(combined_params_path, scope, *cpp_prog, false);
Y
Yan Chunwei 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
  } else {
    auto &prog = *cpp_prog;
    auto &main_block_desc = *prog.GetBlock<cpp::BlockDesc>(0);
    for (size_t i = 0; i < main_block_desc.VarsSize(); ++i) {
      auto &var = *main_block_desc.GetVar<cpp::VarDesc>(i);
      if (var.Name() == "feed" || var.Name() == "fetch" || !var.Persistable())
        continue;

      std::string file_path = model_dir + "/" + var.Name() + ".nb";
      VLOG(4) << "reading weight " << var.Name();

      switch (var.GetType()) {
        case VarDescAPI::Type::LOD_TENSOR:
          LoadParamNaive(file_path, scope, var.Name());
          break;
        default:
          CHECK(false) << "unknown weight type";
      }
Y
Yan Chunwei 已提交
714 715 716 717 718 719
    }
  }

  VLOG(4) << "Load naive buffer model in '" << model_dir << "' successfully";
}

720 721 722 723 724 725 726 727 728 729 730
void LoadModelNaiveFromMemory(const std::string &model_buffer,
                              const std::string &param_buffer,
                              Scope *scope,
                              cpp::ProgramDesc *cpp_prog) {
  CHECK(cpp_prog);
  CHECK(scope);
  cpp_prog->ClearBlocks();

  // Load model

  naive_buffer::BinaryTable table;
731
  table.LoadFromMemory(model_buffer.c_str(), model_buffer.length());
732 733 734 735 736 737 738 739 740 741 742

  naive_buffer::proto::ProgramDesc nb_proto_prog(&table);
  nb_proto_prog.Load();
  naive_buffer::ProgramDesc nb_prog(&nb_proto_prog);

  // Transform to cpp::ProgramDesc
  TransformProgramDescAnyToCpp(nb_prog, cpp_prog);

  // Load Params
  // NOTE: Only main block be used now.
  // only combined Params are supported in Loading Model from memory
743
  LoadCombinedParamsNaive(param_buffer, scope, *cpp_prog, true);
744 745 746 747

  VLOG(4) << "Load model from naive buffer memory successfully";
}

Y
Yan Chunwei 已提交
748 749
}  // namespace lite
}  // namespace paddle