pooling.cpp 3.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuruilong 已提交
15 16
#ifdef POOL_OP

W
wangliu 已提交
17
#include "pooling.h"
L
liuruilong 已提交
18
#include "common/types.h"
W
wangliu 已提交
19 20 21
#ifdef _OPENMP
#include <omp.h>
#endif
22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle_mobile {
namespace operators {
namespace math {

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <typename PoolProcess, typename T>
class PoolFunctor<CPU, PoolProcess, T> {
朔-望's avatar
朔-望 已提交
34
 public:
35 36 37 38 39
  void operator()(const framework::Tensor &input, const std::vector<int> &ksize,
                  const std::vector<int> &strides,
                  const std::vector<int> &paddings, PoolProcess pool_process,
                  framework::Tensor *output) {
    const int batch_size = input.dims()[0];
40

41
    const int input_height = input.dims()[2];
42

43
    const int input_width = input.dims()[3];
W
wangliu 已提交
44

45
    const int output_channels = output->dims()[1];
46

47 48 49 50 51 52 53 54
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
55

56 57
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;
58

59 60 61 62
    const T *input_data = input.data<T>();
    T *output_data = output->mutable_data<T>();
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
63
#pragma omp parallel for
64 65 66 67 68 69 70 71
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
72

Z
ZhenWang 已提交
73
            auto ele = pool_process.initial();
74 75 76 77
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.compute(input_data[h * input_width + w], &ele);
              }
78
            }
79
            int pool_size = (hend - hstart) * (wend - wstart);
Z
ZhenWang 已提交
80 81
            pool_process.finalize(static_cast<float>(pool_size), &ele);
            output_data[ph * output_width + pw] = static_cast<T>(ele);
82
          }
83
        }
84 85 86
        input_data += input_stride;
        output_data += output_stride;
      }
87
    }
88
  }
89 90
};

Z
ZhenWang 已提交
91
template class PoolFunctor<CPU, math::AvgPool<float, float>, float>;
92
template class PoolFunctor<CPU, math::MaxPool<float>, float>;
Z
ZhenWang 已提交
93 94
template class PoolFunctor<CPU, math::AvgPool<int8_t, int32_t>, int8_t>;
template class PoolFunctor<CPU, math::MaxPool<int8_t>, int8_t>;
朔-望's avatar
朔-望 已提交
95 96 97
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
98 99

#endif