pooling.cpp 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/

#include "pooling.h"
#include <common/types.h>

namespace paddle_mobile {
namespace operators {
namespace math {

/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
template <typename PoolProcess, typename T>
class PoolFunctor<CPU, PoolProcess, T> {
33 34 35 36 37
public:
  void operator()(const framework::Tensor &input, const std::vector<int> &ksize,
                  const std::vector<int> &strides,
                  const std::vector<int> &paddings, PoolProcess pool_process,
                  framework::Tensor *output) {
38

39
    const int batch_size = input.dims()[0];
40

41
    const int input_height = input.dims()[2];
42

43 44 45 46 47
    const int input_width = input.dims()[3];
    if (output == nullptr) {
      DLOG << "output tensor is null";
    }
    const int output_channels = output->dims()[1];
48

49 50 51 52 53 54 55 56
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
57

58 59
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;
60

61 62
    const T *input_data = input.data<T>();
    T *output_data = output->mutable_data<T>();
63

64
    for (int i = 0; i < batch_size; i++) {
65
#pragma omp parallel for
66 67 68 69 70 71 72 73 74
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
75

76 77 78 79 80
            T ele = pool_process.initial();
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                pool_process.compute(input_data[h * input_width + w], &ele);
              }
81
            }
82 83 84 85
            int pool_size = (hend - hstart) * (wend - wstart);
            pool_process.finalize(static_cast<T>(pool_size), &ele);
            output_data[ph * output_width + pw] = ele;
          }
86
        }
87 88 89
        input_data += input_stride;
        output_data += output_stride;
      }
90
    }
91
  }
92 93 94 95 96 97 98
};

template class PoolFunctor<CPU, math::AvgPool<float>, float>;
template class PoolFunctor<CPU, math::MaxPool<float>, float>;
} // namespace math
} // namespace operators
} // namespace paddle_mobile