conv_op.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
#include "lite/kernels/huawei_ascend_npu/bridges/graph.h"
#include "lite/kernels/huawei_ascend_npu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace huawei_ascend_npu {

int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[HUAWEI_ASCEND_NPU] Converting " << op_type << "... ";

  // Get input and output vars and op attributes
  auto input_name = op_info->Input("Input").front();
  auto input = scope->FindMutableTensor(input_name);
  auto input_dims = input->dims();

  auto filter_name = op_info->Input("Filter").front();
  auto filter = scope->FindMutableTensor(filter_name);
  auto filter_dims = filter->dims();

  auto output_name = op_info->Output("Output").front();
  auto output = scope->FindMutableTensor(output_name);
  auto output_dims = output->dims();

  auto bs = input_dims[0];
  auto ic = input_dims[1];
  auto oc = filter_dims[0];
  CHECK_EQ(input_dims.size(), 4L);
  CHECK_EQ(output_dims.size(), 4L);
  CHECK_EQ(filter_dims.size(), 4L);
  CHECK_EQ(output_dims[0], bs);
  CHECK_EQ(output_dims[1], oc);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  bool with_act =
      op_info->HasAttr("with_act") && op_info->GetAttr<bool>("with_act");
  std::string act_type =
      with_act ? op_info->GetAttr<std::string>("act_type") : "";
  float leaky_relu_alpha = act_type == "leaky_relu"
                               ? op_info->GetAttr<float>("leaky_relu_alpha")
                               : 0.f;
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(dilations.size(), 2L);

  // Input node
  std::shared_ptr<Node> input_node = nullptr;
  if (graph->Has(input_name)) {
    input_node = graph->Get(input_name);
  } else {
    input_node = graph->Add(input_name, *input);
  }

  if (paddings.size() == 2L) {
    for (size_t i = 0; i < strides.size(); ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "[HUAWEI_ASCEND_NPU] Paddings size should be "
         "the same or twice as the input size.";

  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  operators::UpdatePaddingAndDilation(&paddings,
                                      &dilations,
                                      strides,
                                      padding_algorithm,
                                      input_dims,
                                      filter_dims);

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  // Check Restrictions: HxW(input) == HxW(filter) if output feature h*w = 1*1
  if (output_dims[2] == 1 && output_dims[3] == 1) {
    int input_h = input_dims[2] + paddings[0] + paddings[1];
    int input_w = input_dims[3] + paddings[2] + paddings[3];
    int filter_h = (filter_dims[2] - 1) * dilations[0] + 1;
    int filter_w = (filter_dims[3] - 1) * dilations[1] + 1;
    CHECK_EQ(input_h, filter_h) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK "
                                   "restriction: if output HxW = 1x1, then "
                                   "input height after padding should equal to "
                                   "filter height after dilation";
    CHECK_EQ(input_w, filter_w) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK "
                                   "restriction: if output HxW = 1x1, then "
                                   "input width after padding should equal to "
                                   "filter width after dilation";
  }

114 115 116 117 118
  // Check Restrictions: outChannel divide groups should equal to 0
  CHECK_EQ(oc % groups, 0) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK "
                              "restriction: out channel divice groups should "
                              "equal to 0";

119 120
  // Check depthwise mode, and decide whether use DepthwiseConv2D Op
  bool use_depthwise_conv = false;
121
  bool is_depthwise_mode = (ic == groups && oc == groups);
122 123
  if (is_depthwise_mode && dilations[0] == 1 && dilations[1] == 1) {
    use_depthwise_conv = true;
124 125
    // Change filter shape {oc, ic/groups = 1, kh, kw} => { K=1, oc, kh, hw}
    filter->Resize({1L, oc, filter_dims[2], filter_dims[3]});
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    LOG(WARNING) << "[HUAWEI_ASCEND_NPU] DepthwiseConv2D op is used.";
  }

  // Filter node
  auto filter_node = graph->Add(filter_name, *filter);

  // Add bias node if exists bias
  // Supports the bias nodes with the following dimensions
  // 0: {oc} => 1D tensor of foramt ND
  // 1: {1, oc, oh, ow}
  // 2: {n, oc, oh, ow}
  std::vector<int64_t> bias_shape;
  std::shared_ptr<Node> bias_node = nullptr;
  bool is_channel_bias = false;
  if (HasInputArg(op_info, scope, "Bias")) {
    auto bias_name = op_info->Input("Bias").front();
    if (graph->Has(bias_name)) {
      bias_node = graph->Get(bias_name);
    } else {
      auto bias = scope->FindMutableTensor(bias_name);
      auto bias_dims = bias->dims();
      auto bias_data_size = bias_dims.production();
      auto output_data_size = output_dims.production();
      if (bias_data_size == oc) {
        // 0: {oc}
        bias_shape = {oc};
        is_channel_bias = true;
      } else if (bias_data_size == output_data_size / bs) {
        // 1: {1, oc, oh, ow}
        bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]};
      } else if (bias_data_size == output_data_size) {
        // 2: {n, oc, oh, ow}
        bias_shape = output_dims.Vectorize();
      } else {
        LOG(WARNING)
            << "[HUAWEI_ASCEND_NPU] Bias dimension " << bias_dims
            << " isn't supported in conv2d Op when output dimension is "
            << output_dims;
        return FAILED;
      }
      bias_node = graph->Add(bias_name, *bias, bias_shape);
    }
  }

  // Conv node
  std::shared_ptr<Node> conv_node = nullptr;
  if (use_depthwise_conv && is_depthwise_mode) {
    conv_node = graph->Add<ge::op::DepthwiseConv2D>(output_name);
    auto conv_op = conv_node->data<ge::op::DepthwiseConv2D>();
    conv_op->set_input_x(*input_node->data());
    conv_op->set_input_filter(*filter_node->data());
    conv_op->set_attr_strides(
        ge::Operator::OpListInt({1, 1, strides[0], strides[1]}));
    conv_op->set_attr_dilations({1, 1, dilations[0], dilations[1]});
    conv_op->set_attr_pads(
        {paddings[0], paddings[1], paddings[2], paddings[3]});
    conv_op->set_attr_data_format("NCHW");
    if (bias_node != nullptr && is_channel_bias) {
      conv_op->set_input_bias(*bias_node->data());
185 186 187 188
      TENSOR_UPDATE_INPUT(conv_op,
                          bias,
                          ge::FORMAT_NCHW,
                          CvtPrecisionType(bias_node->precision()));
189
    }
190 191 192 193 194 195 196 197
    TENSOR_UPDATE_INPUT(
        conv_op, x, ge::FORMAT_NCHW, CvtPrecisionType(input_node->precision()));
    TENSOR_UPDATE_INPUT(conv_op,
                        filter,
                        ge::FORMAT_NCHW,
                        CvtPrecisionType(filter_node->precision()));
    TENSOR_UPDATE_OUTPUT(
        conv_op, y, ge::FORMAT_NCHW, CvtPrecisionType(conv_node->precision()));
198 199 200 201 202 203
  } else {
    conv_node = graph->Add<ge::op::Conv2D>(output_name);
    auto conv_op = conv_node->data<ge::op::Conv2D>();
    conv_op->set_input_x(*input_node->data());
    conv_op->set_input_filter(*filter_node->data());
    conv_op->set_attr_strides(
204
        ge::Operator::OpListInt({1, 1, strides[0], strides[1]}));
205 206 207
    conv_op->set_attr_pads(ge::Operator::OpListInt(
        {paddings[0], paddings[1], paddings[2], paddings[3]}));
    conv_op->set_attr_dilations(
208
        ge::Operator::OpListInt({1, 1, dilations[0], dilations[1]}));
209 210 211 212
    conv_op->set_attr_groups(groups);
    conv_op->set_attr_data_format("NCHW");
    if (bias_node != nullptr && is_channel_bias) {
      conv_op->set_input_bias(*bias_node->data());
213 214 215 216
      TENSOR_UPDATE_INPUT(conv_op,
                          bias,
                          ge::FORMAT_NCHW,
                          CvtPrecisionType(bias_node->precision()));
217
    }
218 219 220 221 222 223 224 225
    TENSOR_UPDATE_INPUT(
        conv_op, x, ge::FORMAT_NCHW, CvtPrecisionType(input_node->precision()));
    TENSOR_UPDATE_INPUT(conv_op,
                        filter,
                        ge::FORMAT_NCHW,
                        CvtPrecisionType(filter_node->precision()));
    TENSOR_UPDATE_OUTPUT(
        conv_op, y, ge::FORMAT_NCHW, CvtPrecisionType(conv_node->precision()));
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  }
  // append Add node to support bias
  if (bias_node != nullptr && !is_channel_bias) {
    auto add_node = graph->Add<ge::op::Add>(output_name);
    auto add_op = add_node->data<ge::op::Add>();
    add_op->set_input_x1(*conv_node->data());
    add_op->set_input_x2(*bias_node->data());
    conv_node = add_node;
  }
  CHECK(conv_node);

  // ONLY support relu/leaky_relu now
  // to do (@qili93): add more act types
  if (!act_type.empty()) {
    if (act_type == "relu") {
      auto act_node = graph->Add<ge::op::Relu>(output_name);
      auto act_op = act_node->data<ge::op::Relu>();
      act_op->set_input_x(*conv_node->data());
    } else if (act_type == "leaky_relu") {
      auto act_node = graph->Add<ge::op::LeakyRelu>(output_name);
      auto act_op = act_node->data<ge::op::LeakyRelu>();
      act_op->set_input_x(*conv_node->data());
      act_op->set_attr_negative_slope(leaky_relu_alpha);
    } else {
      LOG(WARNING) << "[HUAWEI_ASCEND_NPU] act type not supported: "
                   << act_type;
      return FAILED;
    }
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace huawei_ascend_npu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(
    conv2d,
    kHuaweiAscendNPU,
    paddle::lite::subgraph::huawei_ascend_npu::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(
    depthwise_conv2d,
    kHuaweiAscendNPU,
    paddle::lite::subgraph::huawei_ascend_npu::ConvConverter);