// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "lite/operators/conv_op.h" #include "lite/kernels/huawei_ascend_npu/bridges/graph.h" #include "lite/kernels/huawei_ascend_npu/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace huawei_ascend_npu { int ConvConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto op_info = op->op_info(); auto op_type = op_info->Type(); auto scope = op->scope(); VLOG(3) << "[HUAWEI_ASCEND_NPU] Converting " << op_type << "... "; // Get input and output vars and op attributes auto input_name = op_info->Input("Input").front(); auto input = scope->FindMutableTensor(input_name); auto input_dims = input->dims(); auto filter_name = op_info->Input("Filter").front(); auto filter = scope->FindMutableTensor(filter_name); auto filter_dims = filter->dims(); auto output_name = op_info->Output("Output").front(); auto output = scope->FindMutableTensor(output_name); auto output_dims = output->dims(); auto bs = input_dims[0]; auto ic = input_dims[1]; auto oc = filter_dims[0]; CHECK_EQ(input_dims.size(), 4L); CHECK_EQ(output_dims.size(), 4L); CHECK_EQ(filter_dims.size(), 4L); CHECK_EQ(output_dims[0], bs); CHECK_EQ(output_dims[1], oc); auto strides = op_info->GetAttr>("strides"); auto paddings = op_info->GetAttr>("paddings"); auto groups = op_info->GetAttr("groups"); auto dilations = op_info->GetAttr>("dilations"); bool with_act = op_info->HasAttr("with_act") && op_info->GetAttr("with_act"); std::string act_type = with_act ? op_info->GetAttr("act_type") : ""; float leaky_relu_alpha = act_type == "leaky_relu" ? op_info->GetAttr("leaky_relu_alpha") : 0.f; CHECK_EQ(strides.size(), 2L); CHECK_EQ(dilations.size(), 2L); // Input node std::shared_ptr input_node = nullptr; if (graph->Has(input_name)) { input_node = graph->Get(input_name); } else { input_node = graph->Add(input_name, *input); } if (paddings.size() == 2L) { for (size_t i = 0; i < strides.size(); ++i) { int copy_pad = *(paddings.begin() + 2 * i); paddings.insert(paddings.begin() + 2 * i + 1, copy_pad); } } CHECK_EQ(paddings.size(), 4L) << "[HUAWEI_ASCEND_NPU] Paddings size should be " "the same or twice as the input size."; std::string padding_algorithm(""); if (op_info->HasAttr("padding_algorithm")) { padding_algorithm = op_info->GetAttr("padding_algorithm"); } operators::UpdatePaddingAndDilation(&paddings, &dilations, strides, padding_algorithm, input_dims, filter_dims); // Check Restrictions: HxW(input) == HxW(filter) if output feature h*w = 1*1 if (output_dims[2] == 1 && output_dims[3] == 1) { int input_h = input_dims[2] + paddings[0] + paddings[1]; int input_w = input_dims[3] + paddings[2] + paddings[3]; int filter_h = (filter_dims[2] - 1) * dilations[0] + 1; int filter_w = (filter_dims[3] - 1) * dilations[1] + 1; CHECK_EQ(input_h, filter_h) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK " "restriction: if output HxW = 1x1, then " "input height after padding should equal to " "filter height after dilation"; CHECK_EQ(input_w, filter_w) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK " "restriction: if output HxW = 1x1, then " "input width after padding should equal to " "filter width after dilation"; } // Check Restrictions: outChannel divide groups should equal to 0 CHECK_EQ(oc % groups, 0) << "[HUAWEI_ASCEND_NPU] Huawei Ascend NPU DDK " "restriction: out channel divice groups should " "equal to 0"; // Check depthwise mode, and decide whether use DepthwiseConv2D Op bool use_depthwise_conv = false; bool is_depthwise_mode = (ic == groups && oc == groups); if (is_depthwise_mode && dilations[0] == 1 && dilations[1] == 1) { use_depthwise_conv = true; // Change filter shape {oc, ic/groups = 1, kh, kw} => { K=1, oc, kh, hw} filter->Resize({1L, oc, filter_dims[2], filter_dims[3]}); LOG(WARNING) << "[HUAWEI_ASCEND_NPU] DepthwiseConv2D op is used."; } // Filter node auto filter_node = graph->Add(filter_name, *filter); // Add bias node if exists bias // Supports the bias nodes with the following dimensions // 0: {oc} => 1D tensor of foramt ND // 1: {1, oc, oh, ow} // 2: {n, oc, oh, ow} std::vector bias_shape; std::shared_ptr bias_node = nullptr; bool is_channel_bias = false; if (HasInputArg(op_info, scope, "Bias")) { auto bias_name = op_info->Input("Bias").front(); if (graph->Has(bias_name)) { bias_node = graph->Get(bias_name); } else { auto bias = scope->FindMutableTensor(bias_name); auto bias_dims = bias->dims(); auto bias_data_size = bias_dims.production(); auto output_data_size = output_dims.production(); if (bias_data_size == oc) { // 0: {oc} bias_shape = {oc}; is_channel_bias = true; } else if (bias_data_size == output_data_size / bs) { // 1: {1, oc, oh, ow} bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]}; } else if (bias_data_size == output_data_size) { // 2: {n, oc, oh, ow} bias_shape = output_dims.Vectorize(); } else { LOG(WARNING) << "[HUAWEI_ASCEND_NPU] Bias dimension " << bias_dims << " isn't supported in conv2d Op when output dimension is " << output_dims; return FAILED; } bias_node = graph->Add(bias_name, *bias, bias_shape); } } // Conv node std::shared_ptr conv_node = nullptr; if (use_depthwise_conv && is_depthwise_mode) { conv_node = graph->Add(output_name); auto conv_op = conv_node->data(); conv_op->set_input_x(*input_node->data()); conv_op->set_input_filter(*filter_node->data()); conv_op->set_attr_strides( ge::Operator::OpListInt({1, 1, strides[0], strides[1]})); conv_op->set_attr_dilations({1, 1, dilations[0], dilations[1]}); conv_op->set_attr_pads( {paddings[0], paddings[1], paddings[2], paddings[3]}); conv_op->set_attr_data_format("NCHW"); if (bias_node != nullptr && is_channel_bias) { conv_op->set_input_bias(*bias_node->data()); TENSOR_UPDATE_INPUT(conv_op, bias, ge::FORMAT_NCHW, CvtPrecisionType(bias_node->precision())); } TENSOR_UPDATE_INPUT( conv_op, x, ge::FORMAT_NCHW, CvtPrecisionType(input_node->precision())); TENSOR_UPDATE_INPUT(conv_op, filter, ge::FORMAT_NCHW, CvtPrecisionType(filter_node->precision())); TENSOR_UPDATE_OUTPUT( conv_op, y, ge::FORMAT_NCHW, CvtPrecisionType(conv_node->precision())); } else { conv_node = graph->Add(output_name); auto conv_op = conv_node->data(); conv_op->set_input_x(*input_node->data()); conv_op->set_input_filter(*filter_node->data()); conv_op->set_attr_strides( ge::Operator::OpListInt({1, 1, strides[0], strides[1]})); conv_op->set_attr_pads(ge::Operator::OpListInt( {paddings[0], paddings[1], paddings[2], paddings[3]})); conv_op->set_attr_dilations( ge::Operator::OpListInt({1, 1, dilations[0], dilations[1]})); conv_op->set_attr_groups(groups); conv_op->set_attr_data_format("NCHW"); if (bias_node != nullptr && is_channel_bias) { conv_op->set_input_bias(*bias_node->data()); TENSOR_UPDATE_INPUT(conv_op, bias, ge::FORMAT_NCHW, CvtPrecisionType(bias_node->precision())); } TENSOR_UPDATE_INPUT( conv_op, x, ge::FORMAT_NCHW, CvtPrecisionType(input_node->precision())); TENSOR_UPDATE_INPUT(conv_op, filter, ge::FORMAT_NCHW, CvtPrecisionType(filter_node->precision())); TENSOR_UPDATE_OUTPUT( conv_op, y, ge::FORMAT_NCHW, CvtPrecisionType(conv_node->precision())); } // append Add node to support bias if (bias_node != nullptr && !is_channel_bias) { auto add_node = graph->Add(output_name); auto add_op = add_node->data(); add_op->set_input_x1(*conv_node->data()); add_op->set_input_x2(*bias_node->data()); conv_node = add_node; } CHECK(conv_node); // ONLY support relu/leaky_relu now // to do (@qili93): add more act types if (!act_type.empty()) { if (act_type == "relu") { auto act_node = graph->Add(output_name); auto act_op = act_node->data(); act_op->set_input_x(*conv_node->data()); } else if (act_type == "leaky_relu") { auto act_node = graph->Add(output_name); auto act_op = act_node->data(); act_op->set_input_x(*conv_node->data()); act_op->set_attr_negative_slope(leaky_relu_alpha); } else { LOG(WARNING) << "[HUAWEI_ASCEND_NPU] act type not supported: " << act_type; return FAILED; } } return REBUILD_WHEN_SHAPE_CHANGED; } } // namespace huawei_ascend_npu } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE( conv2d, kHuaweiAscendNPU, paddle::lite::subgraph::huawei_ascend_npu::ConvConverter); REGISTER_SUBGRAPH_BRIDGE( depthwise_conv2d, kHuaweiAscendNPU, paddle::lite::subgraph::huawei_ascend_npu::ConvConverter);