elementwise_ops.cc 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
22 23
namespace xpu {

24
int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27
  CHECK(op != nullptr);
  CHECK(ctx != nullptr);
  auto graph = static_cast<Graph*>(ctx);
28 29
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";
32

33 34 35 36 37 38
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
39
  auto x_dims = x->dims();
40 41 42 43 44
  auto y_name = op_info->Input("Y").front();
  auto y_type = kernel->GetInputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
  auto y = scope->FindMutableTensor(y_name);
45
  auto y_dims = y->dims();
46 47 48 49 50
  auto out_name = op_info->Output("Out").front();
  auto out_type = kernel->GetOutputDeclType("Out");
  CHECK(out_type->precision() == PRECISION(kFloat));
  CHECK(out_type->layout() == DATALAYOUT(kNCHW));
  auto axis = op_info->GetAttr<int>("axis");
51

52
  // X node
53
  std::shared_ptr<xtcl::xExpr> x_node = nullptr;
54 55
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
56
  } else {
57
    x_node = graph->AddNode(x_name, x_dims);
58 59
  }

60
  // Y node
61
  std::shared_ptr<xtcl::xExpr> y_node = nullptr;
62 63
  if (graph->HasNode(y_name)) {
    y_node = graph->GetNode(y_name);
64
  } else {
65
    y_node = graph->AddNode(y_name, y_dims);
66
  }
67

68
  // Elementwise node
69 70
  std::shared_ptr<xtcl::xExpr> elementwise_node = nullptr;
  if (y_dims.size() == 1) {
71
    elementwise_node = graph->AddNode(
72
        out_name, graph->builder_.CreateBiasAdd(*x_node, axis, *y_node));
73
  } else if (x_dims.size() == y_dims.size()) {
74
    elementwise_node = graph->AddNode(
75
        out_name, graph->builder_.CreateBinaryOp("add", *x_node, *y_node));
76
  } else {
77 78 79 80 81
    LOG(WARNING)
        << "[XPU] elementwise_add only support y of one dimension, or x "
           "and y of the same dimension. But recieved x's dimension: "
        << x_dims << ", y's dimension: " << y_dims << ", axis: " << axis;
    return FAILED;
82
  }
83
  return REBUILD_WHEN_SHAPE_CHANGED;
84 85 86
}

}  // namespace xpu
87
}  // namespace subgraph
88 89 90
}  // namespace lite
}  // namespace paddle

91 92 93
REGISTER_SUBGRAPH_BRIDGE(XPU,
                         elementwise_add,
                         paddle::lite::subgraph::xpu::ElementwiseConverter);